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Periodicity manifestations in the turbulent regime of the globally coupled map lattice
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We revisit the globally coupled map lattice. We show that in the so called turbulent regime various periodic
cluster attractor states are formed, even though the coupling between the maps are very small relative to the
nonlinearity in the element maps. Most outstanding is a maximally symmetric three cluster attractor in period-3
motion, due to the foliation of the period-3 window of the element logistic maps. An analytical approach is
proposed which successfully explains the systematics of various periodicity manifestations in the turbulent
regime. The linear stability of the period-3 cluster attractors is investigated.

PACS numbd(s): 05.45~a, 05.90:-m, 87.10+e

[. INTRODUCTION riodic or quasiperiodic attractors, the mean field evolves,
controlled by the scale of the cluster orbits, and the LLN is
Recently there has been much progress in the study dfaturally violated. We also present remarkable data which
synchronization of nonlinear mapé—7] and flows[8—12.  show that a GCML at a large system size acquires a high
This may lead to a clarification of the intelligence activity Sensitivity to the periodic windows of the element map. Sec-
supposed to come from the synchronization among the ne@nd, we present an analytical approach which successfully
rons in the neural network. In particular, the globally coupledexplains the systematics of the periodicity manifestations.
map lattice(GCML) may be considered one of the basic We present a tuning condition which limits the system pa-
models for network systems, expressing their characteristiigmeters with which GCML cluster attractor states of a given
limits. In its simplest form, all elements interact among Periodicity may be formed. The key to obtaining the condi-
themselves via their mean fields, with a common Coup]ing:[ion is the introduction of the maximally Symmetric cluster
and each of the elements is a simple logistic map with attractor(MSCA), which is a solution of minimum fluctua-
given non|inearity_ This theory may be regarded as a naturdion in the mean field. This Corresponds to the known state of
extension of spin-glass theorigs3,14 to the nonlinear dy- two clusters in an opposite phase oscillation which is formed
namics. Even though the simplest GCML has only twoin the ordered phase of the GCMIL]. We verify the validity
model parameters_the common non|inearity paramater of the condition in detail, and show that the foliation is the
and the overall coupling—it exhibits a rich variety of in- governing dynamics of this regime.
teresting phases in the parameter space Corresponding to Third, we show that the period-3 cluster attractors formed
various forms of synchronization among the maps deteri.n the turbulent regime are linearly stable, and investigate

mined by the balance between the randomness specifiad bynow their stability changes by the coupliegand the popu-
and the coherence by, lation ratios. In particular, we algebraically derive the

In this paper we revisit the turbulent regime of the value for the formation of the most linearly stable bifurcated

GCML, which is a regime in parameter space with hgh MSCA (MSCA®).
and very smalk. The main interest in this regime has so far ~ The organization of this paper is as follows. In Sec. Il we
focused to so called hidden Cohererﬁﬁé]_ In this phenom- brlefly review various GCML phases, and locate the turbu-
enon the fluctuation of the mean field of the maps in thdent regime in the parameter space. We then summarize the
evolution does not cease at a large system size. The me&hown facts of this regime. No originality is claimed here.
field distribution obeys the central limit theore{@LT), but ~ We then briefly compare them with our results. In Sec. Ill we
not the law of large number&LN) [2,4]. We show that the ~Present our phenomenological findings, including the
dynamics of the GCML in this regime is a foliation of that of period-3 MSCA and an associated fewer cluster attractor. In
the element logistic maps, and that various periodic clustepec. IV we present an analytical approach which explains
attractors are formed, even though the coupling between thguccessfully how the periodic windows of the element map
maps is set very small. We show that regions which may b&ontrol the GCML dynamics in the turbulent regime. In Sec.
described by the hidden coherence do exist, but that they we investigate the stability of the cluster attractors. We
comprise a very limited part of the parameter space. conclude in Sec. VI.

We organize our discussion into three parts. First we
present results of an extensive phenomenological survey ofll. GCML PHASE STRUCTURE AND THE TURBULENT
this regime, and list evidence of periodicity manifestations REGIME: A REVIEW
due to the periodic windows of the element logistic map.
Most outstanding is the onset of period-3 cluster attractorsSy
The turbulent regime is, if we may say, a bizarre region with
many faces—drastic periodicity manifestations as well as al- x;(n+1)=(1—¢)f(x;(n))+eh(n), (i=1,...N),
most perfect randomness under the hidden coherence. At pe- (2.1

In this paper we study the simplest GCML, which is a
stem ofN maps evolving by
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and the mean fielth(n) of maps is defined as is a certain threshold iN (depending on both ande) above
which the MSD ceases to decrease even though the distribu-

N 1 N tion remains Gaussian; the CLT holds but not the L[

2 f(xj(n))=— 2 Xi(n+1). (2.2 This reflects some hidden coherence between the maps in

=1 N = evolution. In fact the LLN is restored when a tiny noise term
is introduced in each map independerity4].

In the first step, allx;’s are simultaneously mapped by a (i) The violation of the LLN reflects that the map prob-

nonlinear functionf. The functionf could be distinct maps ability distribution p(x) depends on time. Indeed, a noise

(heterogeneous GCMUsbut in this paper we consider the intensity analysis of ensembles successfully proves the LLN

simplest case thdtis a logistic mapf (x) =1—ax’ common  [3]. If the LLN should hold in the time averagg(x) would

to all variablegshomogeneous GCML)s The nonlinearity of  haye to be a fixed point distribution of the Frobenius-Perron

f generally magnifies the variance among the maps. Thg,qlution equatior{15]. It has been argued that the fixed

larger the parametal is, the more strongly the vanance IS yoint distribution may be unstable due to the periodic win-

enhanced. In the secoqd step, the maps undergo '”tefac“g'aws of the logistic map4], though this point is controver-

between themselves, with a 9'0'“"?" coupling cqns.tarhlere sial. For instance, on tent maps, the same instability occurs

eachf(x;) is pulled to the mearn fielti(n) at a fixed rate 1 but no periodic windows are presefit6]. The coherence

— . The larger the coupling is, the more strongly the maps manifests itself in mutual informatigr2]. On the other hand,

are driven into synchronization. temporal correlation function similar to the Edwards-
The model is endowed with various interesting phaseée1 €mpo 0 ctio ar to the S

under a subtle balance between the two conflicting tendeﬁo-‘nOIerSOn orde_r paramete_r for the spin glgE4] decay_s 0
cies. The phase diagram in thes plane was explored by zero exponentially. Thus it may not be due to freezing be-

Kaneko[1]. Let us explain the phases, choosing 1.80 for ~ tWeen two element2]. , n .
definiteness. This is far above the criticality=1.40L . . . to The hidden coherence was found in a statistical analysis

the chaos for a single logistic maf) For a sufficiently large  Of the mean field fluctuatiof?]. But there has been no report
e (=0.38) the maps are strongly bunched together in a clusef an extensive statistical analysis which covers the whole
ter in the final attractor, and evolve chaotically as a singleurbulent regime as well as a wide range of the system size.
logistic map. This is thecoherent phase (i) For  Once we have done this, we are faced with a bizarre feature
£=0.22-0.30, the interaction via the mean field no longerof the turbulent regime: the hidden coherence is one thing,
exerts a strong bunching, and the final maps divide into twdut there also occur drastic global periodicity manifestations.
clusters. The maps in each cluster are still tightly synchroThe above lists are correct but need reservations.
nized with each other, and the two clusters mutually oscillate For (i), there is a need for a careful reservation on the
oppositely in phase. This phase turns out to be a solution afoupling values. We show below that, when the coupkng
a minimum fluctuation in the mean field, and is called atakes small but tuned values for a given the maps
two-clustered ordered phaseii) For smallere, the number  again—as in the ordered phase—may split into a few bound
of final clusters increases, but it remains independent of thejusters in periodic motion. The most striking manifestation
total number of maps in the system. The typical number off periodicity in this form is states of almost equally popu-
clusters at various ranges is indicated in the phase diagramated clusters mutually oscillating in the same period with the
[1]. (iv) Finally, for a very smalk the number of clusters is  nymber of clusters. We call this type of periodicity manifes-
in general proportional td. This region is called theurbu-  (4ti0n, MSCA, and present the tuning condition for it below.
lent regime This is the target region of our analysis. We label such a cluster attractor by the periodicity and the
It is known that in the t“fb“'er!t regime maps evolve al-, et of the clusters. For instance, we call the outstanding
most randomly at a small lattice sikg and that there occurs period-3 symmetric cluster state tESc3 MSCA. There

a subtle correlation—a hidden coherence—at IatgBut, as .
. " . .also occurs a bifurcatepl3c3 MSCA. The MSD of thén(n)
we show below, there actually emerge drastic global perIOdI((i:iaistribution is very small in the MSCA or its bifurcated state,

motions of maps if the’s takes certain values for a given b fth d lati ¢ the ol
Let us first briefly review previous observations in the litera- ecause of the good population symmetry among the clus-
ters. At slightly largere, we observe that the number of

ture. _ i A
(i) The final state of the GCML in this regime iterated clusters decreases while the orbits are approximately re-

from a random configuration consists of maps and tiny clustained. A cluster attractor of this typ@{-c) leads to a large
ters, each moving chaotically due to high nonlinearity. TheMSD, which is independent d¥.
number of elementgnaps and clusterss proportional to the As for (i), we show below not only the LLN but also the
number of whole maps, in sharp contrast to the ordered reCLT is violated in almost all regions in the turbulent regime.
gime[2]. We pin down the very limited regions in the turbulent regime
(ii) There emerges a certain coherence between elementéere the CLT holds with a violated LLN; only there may
when the sizeN is large[2,4]. If x;(n) (i=1,... N) are the term “hidden coherence” be used.
really independent random variables following a common As for (iii ), the decay exponent of the temporal correlator
probability distribution, the mean squared deviatidSD)  of the mean field fluctuations gradually decreases with the
of the mean fielch(n) (sh?=(h?)—(h)? with (---) here  deviation of the coupling from the tuned value. Accordingly,
meaning the long time averagshould decrease proportion- theh(n) distribution successively changes its shape from the
ally to 1IN by the LLN, and then(n) distribution must be a highest rank sharpd peaks down to the MSD-enhanced
Gaussian for sufficiently largd by the CLT. However, there Gaussian distribution—the hidden coherence. This indicates

Z| -

h(n)=
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FIG. 1. The MSD surface of a mean field fluctuati®op), and
the gray-scale density plot for the rank of distributighsttom on
thee —N grid. a=1.90, and the inclemerte =2x 10 . The rank
varies from zerdblack to 4 (white).
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violation of the LLN in the time serieSThere is a prominent
peak at £~0.040-0.050—an extreme violation of the
LLN—and in thise range the MSD is in excess even for
N~1C?. In front of the peak there is a deep valley around
£~0.035. We show below this peak and this valley are in-
duced, respectively, by thp3c2 cluster attractor and the
p3c3 MSCA (and its bifurcated stateApart from these, the
MSD surface systematically shows successive peak-valley
structures at larg®l. We can see clearly in Fig. 2 how this
structure is formed with an increase Nf At MSD peaks the
LLN violation starts as early abl=10°—1C°, while in the
valleys one has to wait untl=10°*~10* in order to observe

it. (In both cases, it starts to prevail from the largeside)
This twofold occurrence of the LLN violation leads to suc-
cessive peak-valley structures arouiet 10°, which become
outstanding atN~10*. Beyond that, up to the largest ana-
lyzed N (=10P), the MSD is independent dfl, except for
£=0.005, where the maps still approximately follow the
LLN.

2. Mean field distributions

Now let us discuss the mean field distributions. In the
rank density plot—the bottom panel of Fig. 1—the distribu-
tion is assigned a rank as follows.

(0) The distribution is GaussignThe MSD is the same
within 20% error with that at =0 with commona andN.

(1) Gaussian but with a sizably enhanced M8Bbe hid-
den coherenge The MSD can be even factor of ten larger
than the MSD by the LLN.

that the hidden coherence at the MSD valley may be the (2) A singly peaked distorted Gaussian, or a trapezoidal
most modest periodicity remnant, being elusive due to higiflistribution.

mixing.

(3) Either it has a few sharp peaks on top of a broad band,

The GCML can be defined in a one line equation, but its°" it is an apparent overlapping Gaussian distribution. It

turbulent regime challenges us with so many faces rangin

Bwanifestly shows the periodic motions of the maps.

from a manifest periodicity to the hidden coherence. We (4) The distribution consists of a few sharp peaks only.

consider that it is important to explore the systematics of At rank 0 theh(n) distribution obeys both the LLN and
periodicity manifestations by an extensive statistical surveyCLT, @nd the maps may be thought as independent random

and present a sorted list of phenomenological observation§UmPers with a common  probability distribution. Con-

Below we first devote ourselves to this task.

I1l. PHENOMENOLOGY OF THE TURBULENT REGIME
A. Systematics in the mean field fluctuations

We start with an analysis of the distribution of the mean
field fluctuation in time. In Fig. 1 we show its MSD at
=1.90 as a surface over thé—e plane, which overlays a
density plot of the periodicity rank of thie(n) distribution.

versely, at rank 4 the maps are in periodic motion, and so is
the mean field. The ranks are organized in a way that the
periodicity of the elements becomes more manifest with an
increase of the rank. The MSD surface and the rank density
plot both together reveal a simple rul@he MSD is high
wherever the rank is high, and vice versa. The rank distri-
bution plot is almost a contour plot of the MSD surface

This does not imply the real violation of the LLN in the ensemble

In order to set sufficiently fine grids for the surface, the sys-average[3]. The violation of the LLN means here that there is a

tem size is limited in the rangdl<4x10°. For a wider
range ofN, in Fig. 2 we show the sections of the MSD
surface aiN in powers of ten up to 10

1. Peak-valley structure of the MSD surface

larger fluctuation in the time series bfn) than expected by the
LLN. We are interested in detecting the coherence among the
evolving elements by the enhanced MSD.

2The h(n) distribution cannot be a precise Gaussian, as it is lim-
ited in[ —x, ,X_]. When we discuss whether it is Gaussian or not,

we are concerned whether the essence of the CLT, that the convo-

First let us discuss the MSD surface and its sections. Th
linear edge of the surface at=0 is of course due to the
LLN. For a nonzero but very smadl (=0.01), the LLN still

fition of independent random distributions peaks like a Gaussian, is
in action or not.
3The assignment of rank to each of thousands of distributions was

holds to a good approximation but otherwise we can clearly painful task. It was thrilling that two independently determined

see that the surface has many peaks along\tlexis—the

diagrams turned out to be a perfect match.
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FIG. 2. Central diagram: the MSD at=1.90 as a function of overe =0—0.10 with inclement 10*. (a) N=1C, (b) 10°, (c) 10, (d)
10°, and(e) 10°. Top boxes: Then(n) distributions at the MSD peaks. All are rank 3. Bottom: the same at valleys. All are rank 1 and
correspond to the hidden coherence.

3. Regularity in the MSD enhancement We should add that the most prominent MSD peak and
The above rule persists for largiiras well. In Fig. 2, for the deepest valley at the front of it are two extremes. At the

N=10° we show thm(n) distributions at MSD peakS in the former (004@:8<0050), the distribution is either rank 3

upper small boxes, and at valleys in the lower boxes. We fin@" €ven 4 and the MSD peak starts even at siallhe rank
the following® 4 distribution exhibits a periodic coherent motion of maps.

(i) At any MSD peak, the rank is always high—rank 3. We show below that this is due to the formation op&cZ
This tells us succinctly that the high MSD is induced by thecluster attractor; the_ Ia_ck o_f one cluster leads to a high MSD.
maps evolving in a quasiperiodic motion at the peakal- At the Iat-ter,. the (J!|str|but|on is also rgnk 4, but the MSD
ues. suppression is realized by the symmetrically populgtdd3

(i) On the other hand, at any MSD valleys, the rank is 1MSCA. We will briefly investigate the periodicity manifes-

(the MSD-enhanced Gaussjarand reflects the hidden co- tation in general below, introducing other phenomenological
means as well.

herence.
In brief, the MSD peaks at large N come from the quasi-
periodic motion of the element maps, and the hidden coher- 4. Hidden coherence revisited
ence is restricted to the MSD valley at large N The coherence, as observed by the violation of the LLN,

occurs at any value in the range 0.005-0.12, except that
the onset of the violation is earlier at MSD pedkse Sec.
“These two rules actually hold fak=10" up to the largesN A 1). But the hiddencoherence implies more: the MSD
(=10°) of our analysis. See below for a further discussion orithe must be enhanced, but the mean field distribution must re-
dependence of thie(n) distribution. main Gaussian—the rank must be 1.
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10 —— — T e tions in the bifurcated period-3 motion. This is seen by the
’ el LE Si 25 g tiny split in the orbits near zerdFor a=1.90, the bifurcated

I o0 n eoogesz| || TR A p3c3 MSCA is always formed at~0.035, while at slightly

10" ze=0 €‘=/0.0682 FANTAVAN E
£ /

\ [ ' \ p3c3 MSCA (90%) or an unstable period-3 cluster with high
E / ‘ rate mixing (10%) depending on the initial configurations.

}//\ | /M‘ highere (=0.037-0.041the final state is either a genuine
' We will come back to this point in Sec. V below.

|

EN S SR : |
N
i - : IJII \| E\|I\||\

93 @ 05 0 030 03 2. p3c2 cluster attractor state: the event at=0.042

N=30 500 2000 100000
o S . . At the nearby stronger couplings €0.041-0.05}, the

FIG. 3. The variation of thé(n) distribution with a system size maps almost a|WayS Sp"t into two clusters with a popu|ation
Nata=1.90,£=0.0682, and\=3x 10", 5x 10, 2x10°, and 16 ratio of approximately 2:1, and the two clusters oscillate mu-
from left to right. Each is sampled in 1@erations from a random tually in period 3. The map orbits sampled at=0.042
start, discarding the first $Gsteps, and compared with a reference clearly exhibit thisp3c2 state. The mean field oscillates in
distribution(rank 0. The rank is given on top. period 3 with a large amplitude due to the lack of one of the

To pin down the regions of the hidden coherence on thé\/lsci'?:f and ht?\nct?\ Iea?s tol a prom|tn%nt M?D enhance-
o ot s s e change o e Gk | T UAR 48 0 e gy epatdpons
bution with the increase oN. Figure 3 exhibits a typical urn piot, ShW hi ?‘ e por d | : kl1o :
case =0.0682, corresponding to one of the MSD peaks aft?ouop'] Note that this 'gf MSID_'S |nhepen ent.oftl € num-
a=1.90. Just when the LLN violation starts Mt 10°—1C, er of mapsN—a way of vio 6_‘“”9 the LLN—simply be-

cause the largbl GCML dynamics is reduced to that of two

the rank becomes 1. However, notably, fbbeyond 16, the X ; )
rank soon becomes 2 and simultaneously the MSD peakc_lusters. The MSD is solely determined by the scale given by

valley structure appears. Fot=10%, the rank becomes 3, the cIustgr orbits and the populaticatios. As'a chepk Iet'us
and the peak-valley structure becomes remarkable. The r&Y @n es'gmate of the MSD. For the population radi0 6, it
gions of hidden coherence are thus restricted to a very smaff 9'Ven by

part. Excepting the transitive regidh~10°—1C, only MSD - 5 s

valleys for theh(n) distribution to remain Gaussian, and (8N)"=(S3)(01+ 65— 113 — (2T/3) (61 + 02— 6167),
further, only inN=10* for the MSD is enhancementThe
deepest MSD valley must be also excepted, since we observe 01+ 6,=1, 3.
the apparent periodic motion @i3c3 MSCA)

with S=Xx, and T=2x,X,, .. Let us take as approxima-
tions #,:0,=2:1, and theorbit pointsx, at the tangent bi-
.. furcation point’ Then we obtain §h)?=25/(3%7)~0.169,
The M$D peak-valley structurg reflects a periodicity ;, good agreement with the observed value 6:D8)1.
manifestation in the turbulent regime at various strengths
depe”d'”g on the V,ajlue,@f' Let _US ,SUb,Stam'ate this issue t?y 3. Peripheral point to the p3c3 MSCA: two events &#+0.032
the following quantities(i) the distribution of maps and their ) ) )
mean field,(ii) map orbits, (i) the temporal correlator of Here we have to account for the fII‘St. transient behavior of
maps; and (iv) the return map oh(n). In Fig. 4,ais set at the maps. In eventA), the maps drop into @3c3 cluster
1.90, and the above quantities are listed in a row for eacRttractor after a long iteratiofat n~8x 10%), while in event
typical iteration at a characteristic The lattice size is fixed ~(B) they remain in a few unstable clusters in mutual period-3
at N=10° in order to shed more light on the predominantMotion until the last. EventA) is essentially the same with
lower band in then(n) distribution is an artifact of the first
1. p3c3 MSCA: the event a¢=0.036 transient motion of maps. In eve(B), the clusters are un-
L . : stable, and there is a mixing of maps between the clusters;
Let us first investigate the region of the Qeepest M.SDhence we can see only three clouds in lifa) return map.
valley. In the map orbits we clearly find three lines showing g : .
. ) . But the mixing rate is not so high as we can see from a
the period-3 motion of maps in three clusters, and the maEJ . 8 L
distribution shows thre@ peaks. The mean fieltthe black ra_dual exponential decayf the 9or(elatp ' W't.hTN 140,
. . ' . . which clearly shows damped oscillation in period.3
circle) is almost constant due to the high population symme-
try, and accordingly thé@(n) return map shows three almost
degenerate points. The temporal correlator oscillates in pe-
riod 3. All exhibit the formation of thgp3c3 MSCA. ®The six orbit points consist of three doublets of points, and the
There is a slight subtlety in that the state is actuallytwo points in a doublet are very close each other. We have checked

bifurcated—six clusters of maps with almost equa] popu|a1hi$ numerically, but the map distribution with the bin size 5
X 102 shows only threeS peaks.

"a=7/4 andx,=2/21+8/(3./7)cog(6+2km)/3], k=0,1,2, with
B . ~ 6=tan (3+/3) for the stable set. Numerically).9983, — 0.7440,
SC(t)=x(n+1)-x(n)/|x(n+1)||x(n)]), with the relative vector 0.03140.
X(n)=(xs(n)—h,, ... xy(nN)—h,). The average---) is taken 8We user, the number of steps in which the correlator decreases
overn for the last 1000 steps. to 10 3, as an estimate of the mixing rate.

B. The periodicity manifestation in the turbulent regime
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FIG. 4. The variation of the
GCML dynamics withe through
the prominent MSD peak region.
N=10® GCML with a=1.90, and
the total iteration steps are 3br
5 each run.(a) The mean field dis-
JLF.HHHLHHLHHJJJJ . tribution (marked ash), discard-

ing the first 10 transient steps and
the map distributionx) averaged
over the last X10° steps. (b)
Clustering pattern. The lines are
orbits of randomly selected 10
maps for the last seven steps, and
the black circle is the mean field.
(c) Temporal correlator between
the two relative-coordinate vec-
tors of the maps. Averaged over
the last 16 steps.7~0, 30, 70,
140, », », », 50, and 0 fore
=0,...,0.056. (d) The return
maps for the same steps &.
The arrows indicate the period
three clusters.

@) (b) © )

4. Variation of dynamics withe Because of the increased coherence, ) distribution
Let us have a bird’s eye view of Fig. 4. The row fram retains the orbital structure even after the convolution, and

=0 to 0.042 is the path from randomness to periodicity. Atthe rank of theh(n) distribution is gradually increased. Fi-
£=0 the maps evolve freely in pure randomness. In this mapally the rank-4 distribution appears in the period-3 region.
distribution we observe many sharp peaks with a fractal In the period-3 region, we first observe the formation of
structure. These reflect unstable fixed points of a single maghe p3c3 MSCA, and at slightly highes the p3c2 cluster

But the h(n) distribution—the convolution of the map attractor. This region continues up £6=0.050.
distribution—is Gaussian due to the CLT. It is sharp due to Beyond this, everything proceeds oppositely unil

the LLN. The maps evolve randomly in a simple logistic ~0.058. The rank gradually decreases and the correlator is
pattern, and the correlator decays almost instantly. With inshortened. Figure 4 ends at this position. At largerthe
creasing couplinge, the coherence between maps is in-MSD shows small peaks and valleys in the range
creased. The correlator reveals the precursor of the period~0.06—0.1. Above:~0.10 the correlator catches the pre-
cluster attractor by itp=3 oscillation, and becomes pro- cursor of the ordered two clustered regime. The path to pe-
longed. The map distribution turns into three broad bandsiodicity is repeated, and eventually the period-2 regime
losing subpeaks, and finally turns into sharp théepeaks. starts around~0.2.
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This is a bird’s eye view of the turbulent regime at fa(x)=1—ax?,
=1.90 andN=10%. For largerN(=10%, the MSD surface
shows peaks and valleys more remarkably. The bulk of thavhere the time-dependent terinfn) is replaced by a con-
above variation of the dynamics withalso holds at the local stanth*. Every one of the maps evolves by a common equa-
scale, for each nearby pairing of a peak and valley. The pealion at each step in Eq2.1), and further by a unique con-
h(n) distribution is rank 3 and, with the change sfto  Stant equation in Eq4.3). As noted by Perez and Cerdeira
nearby valley values, the rank gradually decreases down to 117] some years ago, we can cast this unigue equation into a
At the higher(lower) nonlinearitya, we observe the same standard logistic map with a reduced nonlinear parantgter
dynamics if the coupling is shifted to the largemalle) :
side with appropriate amount. For instance, the period-3 at- yi(n+1)=1-b(yi(n)* (i=1,...N). (4.9
tractor regione~0.032—0.050 ata=1.90 is shifted toe
~0.06—0.08 ab=2.0. This suggests curves of the balance
in the a,e parameter space. But why are the period 3 attrac- yi(nN)=(1—g+eh*)"x(n), (4.5
tor states formed at this particular region? Are there no
other cluster attractors with different periodicities? Our nextand the reduction rate of the nonlinearity parameter is given
task is to answer these questions, deriving the curves of thigy
balance analytically.

by a linear scale transformation

r=

| T

=(1-¢)(1—e(1—h*)). (4.6)
IV. AN ANALYTIC APPROACH

A. Tuning condition and period-3 clusters At the MSCA, the mean field* is constant, so the reduction

Let us consider an idealizégxaci MSCA. It is a state of factorr_ is also constant. If the clusters of the MSCA o_scnlate
in period 3, so do the mapy;(n)—the two solutions

a GCML under three conditionsi) the N maps of the ) : :
o : X C(x1,%2,%3)"" (v=1,2) of the cyclic equatior(4.1) agree
GCML split into ¢ clusters with an exact population symme with the two sets of period-3 orbit pointgy(n).y(n

try; (ii) the synchronization of maps is perfect, so that there W) (b -
is no variance of map positions in each of the clusters; an £ 1).y(n+2)) (v=1,2) of the logistic mayi4.4) modulo

, : e scale factor in Eq4.5. The reduction factor must
(i) the clusters mutually oscillate aroungl=c orbital : : ) .
points. Using this idealized state as a key, below we derivéecjuce the high nonlineariyof the GCML down tdb in the

the tuning condition for the MSCA formation. For brevity Pe”Od's window. It starts a]‘.hE 7/4_by the tangent b|fur_ca-
we explain our approach with respect to ti@c3 MSCA in t|(_)n and,. after sequential bifurcations apq windows in the
detail, but everything below also holds for the other MSCA’smgdoeV;/.’og tcr:(r)::s a:d;\hzgfgg bi/ ;gg;;'?f Trr;es r:rr'gg (Zf
with higher periodicities. In 3c3 MSCA three clusters, pern Wi I qui u

B, C move cyclically round three fixed positioxs , X,, and tl(')tTf:]afr:psr :alrrml ?e.rzgg:C%r?;?;giz%\g: i].*go.lai?achra
X3. Such a system of orbital points exists as a triple inter~ i thi ge g intecu enp Vi

. . . Eq. (4.6).
section point of three surfaces given by There is another constraint from self-consistency; the av-

erage valug/* of the transformed maps must also obey Eqg.
2, 8 2, y2 2

3
(|,J,k)E{(1,2,3),(2,3,1),(3,1,2)} (41) y* Zl yi=(1_8+8h*)71h*. (47)

Il
w| =

At a=1.90, and £=0.040, for instance, we have two

solutions (0.9630%; 0.00499;-0.72851) and (0.95521, Herey” is a function of the nonlinear parametee—it is
0.070765-0.69993); the former is stable, and the latter iss'mply an equal weight average of the period-3 stable orbits

unstable. In such an exact MSCA, the mean fie{d) is a of the single logistic mapEgs.(4.4)], and can be estimated
time-indépendent constant ' solely by the property of the logistic map without any re-

course to the GCML evolution equation. At a giveh this
1 N 1 13 again gives a constraint curve on theh* plane. Let us
h(n)= N E f(x;(n))= 3 > f(xl(n)):§ 2 f(X)) work oute at the intersection of the two curves. By elimi-
i=1 I=AB,C i=1 natingh* from Egs.(4.6) and(4.7), we obtain

3
* ry*
iglxizh , (4.2) =1 3; _\/r(l_y*)+

W =

> 4.9

ry*)Z

whereX;(n) denotes the coordinate of the clustet timen, and bothr=>b/a and y* on the right hand side are deter-
and the last equality follows from E@2.2) or (4.1). There- mined byb. This is thetuning condition This predicts the
fore, if a MSCA is produced, the GCML evolution equation

(2.1) becomes

91t is possible to transform Eq2.1) formally to a standard form at
each step, but then the reduction faatonay fluctuate step by step.
4.3 Then it does not single out a line.

x(n+1)=(1—e)f (x(n)+eh* (i=1,...N),
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TABLE |. The p=3 periodicity manifestation in the turbulent reginge=1.90, andN=10"*-1¢F.

& range Prediction MSD surface State
0.032-0.0352-0.037 0.0305-0.035192-0.0363 deep valley bifurca@eB MSCA
0.037-0.041 0.0363-0.0422 lower band p3c3 MSCA
0.037-0.041 upper band p3c2 cluster attractor
0.041-0.050 0.0422-0.0514 prominent peak p3c2 cluster attractor

#The downwards cusp position of the MSD valley.

necessary valuef the couplinge for the GCML ata givera  formed in the range~0.037-0.041, and its bifurcated state

to form a MSCA due to the periodic attractor of the singlein £~0.032-0.037. The predicted ranges are
logistic map withb. The functiony* (b) is a well-known =0.0363-0.0422 and 0.0305-0.0363, respectively. In both
square welly* ~0.284 atb=1.735, slightly below the tan- cases, the agreement is remarkable, and we see that the for-
gent bifurcation pointby,, and it drops sharplyy* —y;,  mation actually occurs at any allowedvalue.

«\by,—b) at by,. From a matching of the coefficients in ~ As for the p3c2 cluster state, we need caution in using

(fb)3(y)_y:bG(fb(y)_y)(]‘[i3=l(y_yi))2, we obtain yZ, the tuning condition. This condition is derived under the as-
=1/(3% 2b) = 2/21=0.095. Similarly y*(b)=(1  sumption of a constancy of the mean field. Thus, as a matter

—\J4b—7)/6b up to the first bifurcation poinb=1.769. ©Of principle, it cannot be applied for the asymmetrically
Theny* (b) varies smoothli around 0.08 until the end of POPulated state. However, tE8c2 state is formed with a
the window p=1.7903), and finally increases sharply*(  Slightly higher couplings, and the orbits of two clusters are

~0.18 ath~1.793). Thisy* (b), put into Eq.(4.8), gives the approximately the same with the MSCA orbits. Therefore,
following estimates of for a=1.90: the p3c2 cluster attractor is certainly still under the control

of the period-3 window. We estimate the range by the exten-
A: £=0.0514 at(b,y*)=(1.735,0.284, r=0.913, sion of the period-3 window at the higher coupling si8le
A—the intermittency region. This gives=0.0422-0.0514,

B: £=0.0422 at(b,y*)=(1.750,0.095, r=0.921, in good agreement with the observed range of p3e2

(4.9  Cluster attractor{0.041-0.050 It is interesting to note that
the GCML final states at this range actually consist of two
types depending on the initial condition; tp8c2 cluster
attractor £80%), as well as unstable period-3 clusters with
mixing of maps(the rest. See Fig. 6 below. The estimaie
A intriguingly relates the intermittency of the element map to
the GCML phase of coexistent stable and unstable periodic
clusters. We are aware that we cannot take the success of the
estimate forp>c states on the same footing as that for the
MSCA, but at least it gives a good rule of thumb for the
>c state.

C: £=0.0363 at(b,y*)=(1.769,0.069, r=0.931,
D: £=0.0305 at(b,y*)=(1.790,0.080, r=0.942.

EstimatesA, B, C, and D are below the threshold, at the
threshold, at the first bifurcation point in the window, and at
the closing point of the window, respectively. Note that route
A—D is in the direction of increasinl, which in turn is the
direction of the decreasing coupling constantsince the
larger b requires only a smaller nonlinearity reduction. We
should stress that tuning conditi®#.8) is a necessary con-
dition. For thep3c3 MSCA to be stable, the orbit of the B. Foliation of the logistic windows in the turbulent regime
reduced logistic map must be also stabié period-3 logis- What is the case for othervalues? Do the other windows

tic orbit still continues to exist even beyond the first bifurca- 5150 show up in the expected range in the turbulent re-
tion paintC, but it is unstable. Therefore, for an ex@3c3  gime? To check these questions systematically, let us note
MSCA to be formed, the: range must be within the esti- {hat the tuning condition defines a one-paraméerfamily
matesC-B, but neither withinD-C nor beyondD. Similarly, ¢ curves in the model parameter spéttea, ¢ plane of the

an exact bifurcate@3c3 MSCA must be formed withi-  GcML. Each curve is labeled Hy, and written as a function
C. Our tuning condition does not guarantee the formation ofyf the reduction factor as

the MSCA but it does limit the range in which the forma-
tion is possible. The observed ranges of piecluster attrac- @®(r),e®q(ry)
tors are listed in Table I. Aa=1.90, ap3c3 MSCA is ( \

b ry*(b) \/ . ry*(b) 2)
rr e VAL G G ()R R :
OThe largest rapid variation is the tiny anti square wellyt

~0.01) due to the 3 window atb=1.7858—1.7865. r<i. (4.10

As we show in Sec. V, the Lyapunov exponents of the GCML at_ ) b
the p3c3 MSCA generally consist of anN(—3)-fold degenerate 1hiS emanates from the PO'”G((b):_S( Nr-1=(b,0), and
one and three nondegenerate ones. ForpBe3 MSCA to be  With the decrease of it develops in the parameter space
stable, at least the former degenerate exponent must be negatij8the direction in which botla and ¢ increase in a certain
which implies that the reduced map orbit must be stable. That albalance. If our success above is a general one, all GCML'’s
these exponents are negative at the MSCA is also shown below. with parameters set & (r),s(*)(r)) along a curve labeled
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FIG. 5. The MSD of the mean field distribu-
1.90 tion plotted as a function for N=10* GCML in
panels ata=1.8 (back, and 1.85. ..,2 (front).
£=0-0.12 with inclement 10*. The foliation
curves predicted fop=4, 5, 3, 7, and 5 windows
flow underneath panels, and link the respective

1.95 shaded foliation zones. For each zone there is a
/\/ MSD valley at lowere, and a peak at higher.
" \ . [ir] 2-00
g \ i\l\\\ o
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by b should be commonly controlled by the same dynamicssingle map dynamics. The foliation occurs because, under
of the single logistic map &t. the global interaction, the maps of the GCML form a mac-
In Fig. 5 we find that this is indeed the case. Each panetoscopically coherent state. Even though the coupling in the
shows the MSD of thé(n) distribution as a function of at  turbulent regime is very small, the coherence prevails over
a givena as well as the expected zones for the manifestationhe GCML maps if the tuning condition is met. A few re-
of the outstanding six windows in Table Il. Curvigs10 are  marks are in order.
displayed underneath the panels, and link the respective (1) pesynchronization along the foliation curvehe pe-
zones. At each zone, a MSD valley due to the MSCA shouldiogicity manifestation becomes weakened at a higher reduc-
appear in the lowes side, and a MSD peak hy>c cluster  ion  and there is a threshold,~0.95. Forr~1, both
attractors at the nearby higher We find that this works MSCA and associated> ¢ clusters are formed in tight syn-
With glmost no failure in all panels, and with respect to aIIchronization. Toward ;,~0.95, the clusters broaden. There
six windows. is no mixing among the clusters as yet, but the maps move

The effects of the logistic windows propagate alongchaotically in each cluster. Below,, we observe only the

curves (4.10, which may be calledoliation curves The o .
curve with the labeb links together those GCML’s com- periodicity remnants—on the one hand the overlapping

monly subject to the same logistic window dynamicsbat Gaussianh(n) distribution along the curve which had the
Accordingly the family of curves producesfaliation of the ~ P>¢ cluster abovery,, and on the other hand the MSD-

TABLE II. The outstanding windows and thdi y* (b) values.

Period A: intermittency  B: lower threshold C: the first bifurcation D: closing point Width

7 1.5740, 0.3943 1.5748, 0.3857 1.5754, 0.3846 1.5762, 0.3847 0.0014
5 1.6220, 0.3610 1.6244, 0.3077 1.6284, 0.3012 1.6333, 0.3032 0.0089
7 1.6735, 0.3189 1.6740, 0.2676 1.6744, 0.2678 1.6749, 0.2677 0.0009
3 1.7350, 0.2836 1.7500, 0.0952 1.7685, 0.0685 1.7903, 0.0800 0.0403
5 1.8597, 0.1823 1.8606, 0.0984 1.8614, 0.0990 1.8623, 0.0987 0.0017
4 1.9390, 0.1287 1.9406, -0.1633 1.9415, -0.1668 1.9427, -0.1657 0.0021

&The starting point of intermittency.
PAb=bg—bp.



3498 TOKUZO SHIMADA AND KENGO KIKUCHI PRE 62

TABLE lIl. Samples of the sequences of attractors withc. N=10%, anda in parentheses.

p=4: b:1.9406-1.942% (a=1.95,r~0.995)
4 (MSCA) 3 >
0.0019-0.0022 0.0022-0.0024 0.0024—-0.0026
Epred’ 0.0020—0.0022 0.0022-—— ——-0.0030
p=5: b:1.6244—1.6333 (a=1.66,r~0.980)
5(MSCA)° 4 3
& 0.00986-0.0118 0.0114-0.0124 0.0124-0.0130
Epred” 0.00950—0.0112 0.0112——— ———0.0140

&The range of the window frorB to D, i.e., the intermittent region is not included.

®The ¢ range predicted by the tuning condition and the window data in Table II. The predictions ar€from
B for MSCA andB-A for p>c states.

®For most events, the attractor is either bifurcated or consists of five bands.

dD-C for a MSCA andC-A for a p>c cluster attractor, taking into account the bifurcation.

enhanced Gaussiafthe hidden coherengealong that of tractorsp=>5, c=5(MSCA) — 4— 3 is observed at the ex-
MSCA. See Fig. 2. pectede, and it terminates before the lowest omE5¢2).

(2) Left-right asymmetry of the MSD curveBhe MSD
curves in Fig. 5and 2 show an interesting feature—in each V. STABILITY OF THE PERIOD THREE CLUSTERED

panel the smalles region(the lefy has an ample amount of MAP STATES

peaks and valleys, while the larger only a few broad ones. As  Here we adopt the Lyapunov analysis. As one superlative
for the single logistic map, on the other hand, there are agpjlity, it can be applied to both diverging and converging
many windows in the smallds as in the larger. system orbits, so that it can detect the possible coexistence of

This is naturally understood by the difference in the re-multifold finial states depending on the initial configurations.
duction factor between the zones in a panel. In a way, eachVe measure the maximum Lyapunov expongpty, by a
panel is a screen which displays the windows of the singlétandard methofll9] which keeps track of aN-dimensional
logistic map by using a macroscopic coherent state of théhift vectoréx(n) evolving under the nonautonomous linear-
GCML. But the panels set at fixealvalues are inclined—a 1Z€d equation associated with EQ.1):

smallere (the lef) implies less reduction, i.e~1. ry, di- e

vides the panel at~0.030 via Eq(4.8). The left sensitively oxi(n+1)= —23| 1=e+g)%i(n)oxi(n)
displays the sharp peak-valley structure induced by cluster

attractors. The right, on the other hand, can reflect only the £

accumulation of the periodicity remnants from nearby win- * N ,z;&. xj(n)5xj(n)]. G

dows, being dominated by the prominent one at its respective _ _
zone. As a check we set the panels at fixedhlues. Then AmaxiS the average of the logarithm of the expansion rate of

they displayed windows without asymmetry, and with athe shift vector(with intermediate renormalizationsFor
higher sensitivity at closer to ond18]. both \,« and the MSD, we discard the first transient* 10

(3) Cluster attractors with higher periodicityLet us fsct)?r?]za%enerally it takes only 310" steps for the cluster

search cluster attractors with a periodicity higher than 3. Let us-first check the: dependence of the stability of

Here we give two samples in T"_"ble li. . attractors. We choodé= 1P, fix a at 1.90, and vary in the
p=4 clusters These appear in the left most zone in therange 0.030-0.052 with the inclemeht =10"%. In Fig. 6

a=1.95 panel. From the windoW data in Table Il the nec- \ye show\ ,, in the upper part and the MSD in the lower

essary reduction frora is very small—+~0.995—so we ex-  part1®

pect definite clusters. We indeed find the expected sequence |n the \ ,,,, plot we observe three remarkable structures of

of clusters? p=4, c=4(MSCA)—3-2, in tight synchro- |ow \,,,, events.

nization at the right. . _ (i) A seagull structure(e =0.032—0.03Y with a sharp
p=>5 clusters There are twg=>5 windows in Table Il.  cusp ate =0.0352—all events are bifurcated MSCA'’s with

We choose the one at the lowbrand setb=1.66, which  good population symmetryN, /N~ (1+0.05)/6. Note that

amounts ta =0.980. Since is in the midst of 1 andy,, we  the events form also a seagull in the MSD, and the cusp

expect the clusters are not in complete synchronization, but

yet there is no mixing of maps. Indeed the sequence of at——

For reference, the CPU time for ti=10° GCML is approxi-
mately 2 min for one measurementXf,., (212 steps for precision
12The single cluster cannot be formed. The focusing by averagind0~*) plus the MSD (10 steps on a modest supercomputer
does not act there, and the tiny variance is instantly amplified. IWPP300/6. The total is 2 mix40 (initial configuration$ X 220 (s
appears far in the coherent phage=(0.4 ata=1.90). values)=300 h.
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8 ég;—__-DM‘B
FIG. 6. The Lyapunov exponentappe) and the MSD(lower) T Q
measured for 40 random initial configurations at eachetween ¢
0.0300 and 0.0520 W|th inClement 1@ a=1.90 andN: 106 The FIG. 7. (a) The maximum Lyapunov exponent of the bifurcated

events in the seagull structures are in the bifurcated MSCA stateSCA over the 6,t) plane.\ ., for events in onest bin are aver-
the first lower band events in the MSCA and the second ones thgged, the sign is reversed-§ ,,), and\ ma,c> 0 is truncated for a
p3c2 attractor. These are formed in region®FC), Il (C-B) and  pjrd's eye view.a=1.90, £=0.035, andN=10", and there are
Il (B-A) separated by dashed lines, as expected. In bihdhe  totally 2 10* events.(b) The triangleAPMQ is the allowed €,t)

p=3 clusters are unstable, and the maps mix among themwith region by the constrairg=t, t=(1—s)/2, 1=s+t. The bifurcated

~100. The dashed line shows the predicieghy for the exactly  \SCA events accumulate in the top of the shaded thyMB,
symmetric MSCA. Arrows show the predicted positions of the mostyhich is again a tiny part oA PMQ.

linearly stable MSCA states.

positions agree preciselyThe bifurcated MSCA is more of the clusters is periodic, but, inside each cluster, maps here
stable if the mean field fluctuation is lower, and it is mostevolve randomly with tiny amplitudes<(10 2?) in sharp
linearly stable(\ pn,=—0.38) with the minimum fluctuation contrast against the complete synchronization at the cusp.
(6h*~2x107°). The Lyapunov exponent measures the linear stability of the
(it) The first low band(e=0.037-0.04k—the p3c3  system with respect to the small deviation of the element
states. The population distributes around an exact MSCA—osition. It is sensitive to the microscopic motion of the el-
6/=N,/N~(1+0.15)/3. The events near the lower bound-ement of the system, and hence yields the positive exponent.
ary (\max<0) arep3c3 events with good population sym- gy for a larger deviation, nonlinear terms can become rel-
metry and with a low MSD. evant and pull back the map.This type of map motion—
(iii) The second low banfe=0.041-0.05k—the p3c2 s oscopically chaotic but macroscopically in the periodic
cluster attractor. The corresponding MSD is, contraryiito clusters—may be calleconfined chaasWe hereafter devote

extremely high because of a lack of one cluster to minimize - : C :
: ourselves into the investigation of two outstanding struc-
the h(n) fluctuation(see Sec. IlIB 2 9 g

The foliation of the critical pointsA, ...,D from the tures, namely the bifurcated MSCA seagull and pgc2

. . . . cluster attractor.
period-3 window defines three regions | ©-C), Il (C-B), : . . .
[l (B-A) [Eqg. (4.9)]. Region | is the allowed region for the dThetImeacrj sta;blhgy t:;nalys||§ Otf the blfurgaz)tggzM'SC:ﬁ.
formation of the bifurcated MSCA (MSCH#), region Il the order fo understan € sajient cusp 9oz I the
p3c3 MSCA, and the3c2 cluster attractor is expected in Lyapunov exponent plot, let us consider the linear stability

region IIl. As we see clearly in Fig. 6, regions I, Il, and 11l Matrix of the GCML. _ o
embody structurei), (ii), and (i), respectively, in agree- (1) !:or the cplnflgurat-lon of maps in six clusters,_ the
ment with our prediction. NXN linear stability matrix of the GCML for the evolution

Let us note a remarkable feature in the events in the tw@f One step can be written as
wings of the seagulli). Here all events come out with posi-
tive \pmax (=0.1-0.2. For a system with low degrees of
freedom, the positive\ . implies chaos. But here, even 4we have verified this by inputting pulses on randomly selected
with positive\ ., the maps always form a bifurcate®@c3 maps. The analytic formulation of the nonlinear effect is most de-
state. There is actually no contradiction. The global motionsired.
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M;=(1-¢)
0 -+ XgEg
XiH1 XeH 16
+i XiH21 XeH 26 (5.2
N .
X1He1 XeHeo

multiplied by an overall factor —2a, where X(l
=1,...,6) are thecoordinates of the clusterg, is an N,

X N, unit matrix, andH,; is anN,; X N; matrix with all ele-
ments 1. TheN eigenvalues oM ; consist of two sets. One is
a set of six eigenvaluesV=—2a(1-¢)X, (I=1,...,6),
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6
X (n+1)=(1—-e)f(X))+& > 6;f(Xy),

(1=1,...,6.
(5.3

M.req for the cluster dynamics is derived froM; by E,
—1 andH,;— 6;. The eigenvector oM, subject to\, is
(£11; .. ;&) with (&), ... &) being that 0fM . oq.

(2) The stability matrixM , of the GCML for the evolu-
tion of p steps is given by the chain productmbf M, along
the system orbit. The eigenvalues\f, again consist of two
sets. One is the set of six eigenvalua$)=[—2a(1
—s)]prj:lXF, each N,—1)-fold degenerate, and the first
set eigenvectors df1, remain the eigenvectors of this set.
The other is the same with the ones of Mg, .+—the pth
iterate 0f M;...q. This mechanism holds at any population
composition among the GCML clusters.

each (N,—1)-fold degenerate. The degenerate eigenvectors (3) Now, when the population symmetry among the clus-

of A\ are of the form ColQ;...:0;(1,0,...,0,
-1,0,...,0)0; ...;0), that is, all column blocks, each for
one cluster, are fulfilled b except for thd th block which
has 1 as the first element andl as one of the otheN,
—1 elements. The eigenvector nf") represents a shift of
the system orbits within thieth cluster. The other is a set of
six (in general nondegenerateigenvalues.,, which are the
same with the ones of theX66 stability matrixM ;.4 asS0-
ciated with the cluster evolution

Yo — Y1=fu(Yo) —
X1 X
Xz X3

. — . —
Xe X1

- y5=(fp)°(yo)

ters are exact, all of the maps obey a unique quadratic map-
ping [Eqg. (4.3)] with a constant mean fielth* which is
equivalent to a standard logistic mégq. (4.4)] with a re-
duced nonlinearity via the scale transformatig@.5). Forb

from the first to the second bifurcation point in tipe=3
window (bg=1.76852915 tob,,=1.777221618), the re-
duced mapy evolves in period 6, and so do the six GCML
clusters. This is the bifurcated MSCA. We can write the
correspondence as

—  Yo=(fp)%(Yo)

Xe Xy
X X

. - 2 (5.4)
Xs Xe

In the MSCA, all six eigenvalues dflg in the first set degenerate into a single vawg[—Za(l—s)]GH,ﬁzlxl, with

6

degeneraC)Ef’zl(N,—l)=N—6. From Eqgs(5.4), (4.5), and(4.6) we find A =(—2b)®II°_,y;, that is,A is nothing but the
Lyapunov eigenvalue of the single logistic map for the6 motion. As for the other set, thilg. . for the symmetric

1

configurationd,=1/6 is a chain product of six matrices, thatﬂsg;reol\/l‘;’;red- -+ M1 g With

(I-e+ )X, 7Xz 7Xe
1 Xy (I-e+ )X, 7% €
M1 e —2a . . ) 77:6, (5.5
Xy (1-e+7)Xe

and other five matrices are obtained by cyclically changing—« and the other six exponents also become very small in

the orbit pointsX; by Eq. (5.4). By a simple algebra using
Egs. (4.5 and(5.4), we find that the eigenvalues Mg in
the second set, which are in turn the onedvigf..oq, areA,
with corrections of orde.

proportion to log(])/6. Theb is a solution off$(0)=0 and

the relevant solutio,=1.772892 gives.=0.035192 and
Nmax= —0.361519 for a=1.90—both are in remarkable
agreement with the observed cusp of the GCML Lyapunov

(4) Now we are ready to work out the seagull cusp posi-exponent.
tion. Because\ is proportional to the product of the period-6 ~ Over the seagulle range, Mg.oq has four complex
orbital points of the single logistic mafg,, it becomes zero [(A\¢,\g), k=1,2)] and two real eigenvalues and gives four
when one of the orbital points becomes zero. At this veryexponentsi s iS given by one of the two sets of complex
instance, the N—6 Lyapunov exponents become eigenvalues, while the N—6)-fold degenerate exponent
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10F = =3 XL
L (a) _
X, L _
1 - — x*
0.
I~ mn ||”|_I-I\I!!:==:;;m$-|"“| —
B : i : FIG. 8. (a) The orbits of a
-1.0 = : = - X|, p3c2 cluster attractor for the last
S 512 steps. (b) The maximum
: : Lyapunov exponents.(c) The
04 - (b) 7 number of events in each bin
Kmax n | (A9=10"%) plotted at a popula-
; : tion ratio # for 18341 events
0.2 - = (83%), with stable cluster forma-
L B tion among totally 22 000 events.
N=10%, a=1.90, ands=0.048.
0 Dotted lines are used to draw the
eye, and to separate tightly bound
B B cluster states(centra) and the
0.2 | i confined chaogtwo edges
04 | v _
[ | [

from A runs in the midst of the four. The predictag,.,is ~ over the bulk of events around the symmetric point—the
shown in Fig. 6, and explains the data well. The slight deMSCA is linearly stable. The exception occurs only near the
viation off the cusp is due the small population unbalance; iPoundary(the round curvg where ;4 is mostly positive
is the larger of the larger MSD events. and small §,,=0.05), and the maps form the confined
The dependence of the, . on the population ratioswe  chaos.
proceed with the following algorithm after detecting the The p8c2 cluster attractor We have performed a similar
clusters by the gaps. The six MSCAclusters evolve in the high statistics analysis at=1.90 ands =0.048 for the same
bifurcated orbits of 3c3 MSCA. They can be regarded as N=10* GCML. The final states are twofold: g3c2 cluster
three doublets—, ,C,)), 1=1, 2, and 3, so that the two attractor(83%) and unstablep3 clusters with mixing(the
clustersC, andC,  in a doublet evolve close together. We res. Hereafter we analyze the former in Fig. 8. In the region
combine the two populations in a doublet into one and defin®-55< 6=<0.61, thep3c2 clusters are tightly bounded and
s, tandu as (N|1+ N'z)/N in decreasing order. linearly stable. Here the dynqmlcs of the GCML is reduced
In Fig. 7(a), we exhibit the averageet \ ,z, on the 6,t) to that of two clusters. Just like the2c2 state in the two
plane from the 10 random events foN=10* GCML ordered clustered phasgs], the p3c2 orbits bifurcate with
with a=1.90, £ =0.035. At the top of the pyramid-shaped the change of—the ratiod can be used as a control param-
surface) nay is Negative, and at a minimum. It occurs pre- €ter even in the turbulent regime.
cisely at the most symmetric population configuration. We However, there is a remarkable difference as well. In
also find that the bulk of the events are formed with almost2c2 there is no stable attractor féroutside the window. In
perfect population symmetry. They accumulate in the top othe turbulent regime, on the other hand, a loosely bound
a tiny triangleAAMB (s,t<0.4) which is again a tiny part p3c2 state can be formed—the three orbital bands in the
of the kinematically allowed regioAPMQ. \ ., iS negative  edge regions. This state is again confined chagg, is posi-



3502 TOKUZO SHIMADA AND KENGO KIKUCHI PRE 62

tive (0=<\y5=0.2), and the maps fluctuate randomly in macroscopic periodic motion and maps move around chaoti-
each of the two clusters. But the clusters are in a macrocally inside each clusters. Regarding the linear stability, the
scopic period-3 motion. As the probability distribution Lyapunov exponent is positive. It is tempting to single out
shows, this is formed as frequently as fh&c2 cluster at- the nonlinear effect which confines the maps in periodic
tractor. The state of confined chaos at the unbalanced popglusters. A related problem is the onset of incomplete syn-

lation is a characteristic feature of the cluster attractors in th€hronization with the decrease of the reduction factalong
turbulent regime. the foliation curves. The other problem is concerned with the

variation of the dynamics with the system side We have
VI. CONCLUSION found that the system becomes an extremely sensitive mirror
of the element dynamics with increasihg The salient evi-

In this paper we have revisited the GCML of the logistic dence is shown in Figs. 2 and 3, but we are unable to explain
maps, and studied in detail its so-called turbulent regime. Wevhy this is so. In field theory the vacuum at the spontaneous
have presented our new phenomenological findings in an exreakdown of the symmetry is stable only when the degree
tensive statistical analysis, which as a whole reveal that thef dynamical degree of freedom is infinif20]. If we may
turbulent regime is under the systematic control of the periregard the randomness of GCML maps as a symmetry, the
odic windows of the element logistic map. In particular we MSCA with noh(n) fluctuation corresponds to a vacuum at
have shown that the hidden coherence occurs only in a vemhe symmetry breakdown, and the formation of it by syn-
limited regions in the turbulent regime. Some observationghronization corresponds to the onset of an ordered param-
were partially reported in earlier articles by one of(@sS)  eter. The resolution of the finite size effect in the GCML is
[21], which include the finding of the manifestation@8c3  tempting, since it may bridge the synchronization of the
MSCA andp3c2 attractor state. maps and the onset of the order parameter in the field theory

There appears remarkal8c3 MSCA states as well as in quantitative terms. As a whole this work is an exploration
p3c2 cluster attractors induced by the period-3 window ofof order in chaos, and we have found that the turbulent re-
the element map. Our tuning condition predicts by a familygime of the GCML is controlled by the foliation of the single
of curves how the dynamics of the element map foliates ifogistic dynamics.
the parameter space of the GCML. This successfully ex- Note addedRecently, we have noted related works on the
plains the salient peak-valley structures of the MSD surfacefoliation of the logistic windows. A. P. Parravano and M. G.
and tells us where to see the remarkable sequence of ti@osenza independently reported the MS[2&]. T. Shibata
cluster attractors of the typ@,c=p—(p—1)—(p—2) and K. Kaneko also independently found the foliation of
— windows in the mean field fluctuations, and called it a

We have also investigated the linear stability of the“tongue structure”[23]. Both parallel work$22,23 overlap
period-3 cluster attractors. Both thE83c3 MSCA and its  ours with respect to foliation, but neither the manifestation of
bifurcated state are linearly stable when the population symiype p>c attractors nor the stability of the MSCA were dis-
metry is good, and the MSD of the mean field is minimized.cussed there.
We have analytically explained the value of the coupknaf
a givena for the formation of the most stable bifurcated
MSCA. Thep3c2 cluster attractor is also linearly stable in
the 6 window even though the MSD of thlk(n) is quite It is our pleasure to thank Hayato Fujigaki, Fumio Ma-
high. For the unbalanced population configuration the systerauda, Ko-ichi Nakamura, Maki Tachikawa, Norisuke Sakai,
forms an interesting state of confined chaos, which is a chawolfgang Ochs, and Hidehiko Shimada for useful discus-
acteristic feature of the cluster attractors in the turbulent resions and encouragement. This work was supported by the
gime. Faculty Collaborative Research Grant from Meiji University,

There remain interesting unsolved problems. One conGrant-in-Aids for Scientific Research from Ministry of Edu-
cerns the state of confined chaos newly found in the turbueation, Science and Culture of Japan, and Grant for High
lent regime. This is a state consisting of a few clusters inTechniques Research from both organizations.
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