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Periodicity manifestations in the turbulent regime of the globally coupled map lattice

Tokuzo Shimada and Kengo Kikuchi
Department of Physics, Meiji University, Higashi-Mita 1-1-1, Kawasaki, Kanagawa 214-8571, Japan

~Received 15 April 1998; revised manuscript received 3 April 2000!

We revisit the globally coupled map lattice. We show that in the so called turbulent regime various periodic
cluster attractor states are formed, even though the coupling between the maps are very small relative to the
nonlinearity in the element maps. Most outstanding is a maximally symmetric three cluster attractor in period-3
motion, due to the foliation of the period-3 window of the element logistic maps. An analytical approach is
proposed which successfully explains the systematics of various periodicity manifestations in the turbulent
regime. The linear stability of the period-3 cluster attractors is investigated.

PACS number~s!: 05.45.2a, 05.90.1m, 87.10.1e
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I. INTRODUCTION

Recently there has been much progress in the stud
synchronization of nonlinear maps@1–7# and flows@8–12#.
This may lead to a clarification of the intelligence activi
supposed to come from the synchronization among the n
rons in the neural network. In particular, the globally coup
map lattice~GCML! may be considered one of the bas
models for network systems, expressing their character
limits. In its simplest form, all elements interact amo
themselves via their mean fields, with a common coupli
and each of the elements is a simple logistic map wit
given nonlinearity. This theory may be regarded as a nat
extension of spin-glass theories@13,14# to the nonlinear dy-
namics. Even though the simplest GCML has only tw
model parameters—the common nonlinearity parametea
and the overall coupling«—it exhibits a rich variety of in-
teresting phases in the parameter space correspondin
various forms of synchronization among the maps de
mined by the balance between the randomness specifieda
and the coherence by«.

In this paper we revisit the turbulent regime of th
GCML, which is a regime in parameter space with higha
and very small«. The main interest in this regime has so f
focused to so called hidden coherence@2,3#. In this phenom-
enon the fluctuation of the mean field of the maps in
evolution does not cease at a large system size. The m
field distribution obeys the central limit theorem~CLT!, but
not the law of large numbers~LLN ! @2,4#. We show that the
dynamics of the GCML in this regime is a foliation of that
the element logistic maps, and that various periodic clu
attractors are formed, even though the coupling between
maps is set very small. We show that regions which may
described by the hidden coherence do exist, but that t
comprise a very limited part of the parameter space.

We organize our discussion into three parts. First
present results of an extensive phenomenological surve
this regime, and list evidence of periodicity manifestatio
due to the periodic windows of the element logistic ma
Most outstanding is the onset of period-3 cluster attract
The turbulent regime is, if we may say, a bizarre region w
many faces—drastic periodicity manifestations as well as
most perfect randomness under the hidden coherence. A
PRE 621063-651X/2000/62~3!/3489~15!/$15.00
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riodic or quasiperiodic attractors, the mean field evolv
controlled by the scale of the cluster orbits, and the LLN
naturally violated. We also present remarkable data wh
show that a GCML at a large system size acquires a h
sensitivity to the periodic windows of the element map. S
ond, we present an analytical approach which successf
explains the systematics of the periodicity manifestatio
We present a tuning condition which limits the system p
rameters with which GCML cluster attractor states of a giv
periodicity may be formed. The key to obtaining the con
tion is the introduction of the maximally symmetric clust
attractor~MSCA!, which is a solution of minimum fluctua
tion in the mean field. This corresponds to the known state
two clusters in an opposite phase oscillation which is form
in the ordered phase of the GCML@1#. We verify the validity
of the condition in detail, and show that the foliation is th
governing dynamics of this regime.

Third, we show that the period-3 cluster attractors form
in the turbulent regime are linearly stable, and investig
how their stability changes by the coupling« and the popu-
lation ratios. In particular, we algebraically derive the«
value for the formation of the most linearly stable bifurcat
MSCA (MSCA* ).

The organization of this paper is as follows. In Sec. II w
briefly review various GCML phases, and locate the turb
lent regime in the parameter space. We then summarize
known facts of this regime. No originality is claimed her
We then briefly compare them with our results. In Sec. III w
present our phenomenological findings, including t
period-3 MSCA and an associated fewer cluster attractor
Sec. IV we present an analytical approach which expla
successfully how the periodic windows of the element m
control the GCML dynamics in the turbulent regime. In Se
V we investigate the stability of the cluster attractors. W
conclude in Sec. VI.

II. GCML PHASE STRUCTURE AND THE TURBULENT
REGIME: A REVIEW

In this paper we study the simplest GCML, which is
system ofN maps evolving by

xi~n11!5~12«! f „xi~n!…1«h~n!, ~ i 51, . . . ,N!,
~2.1!
3489 ©2000 The American Physical Society
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3490 PRE 62TOKUZO SHIMADA AND KENGO KIKUCHI
and the mean fieldh(n) of maps is defined as

h~n![
1

N (
i 51

N

f „xi~n!…5
1

N (
i 51

N

xi~n11!. ~2.2!

In the first step, allxi ’s are simultaneously mapped by
nonlinear functionf. The functionf could be distinct maps
~heterogeneous GCML’s!, but in this paper we consider th
simplest case thatf is a logistic mapf (x)512ax2 common
to all variables~homogeneous GCML’s!. The nonlinearity of
f generally magnifies the variance among the maps.
larger the parametera is, the more strongly the variance
enhanced. In the second step, the maps undergo intera
between themselves, with a global coupling constant«. Here
eachf (xi) is pulled to the mean fieldh(n) at a fixed rate 1
2«. The larger the coupling« is, the more strongly the map
are driven into synchronization.

The model is endowed with various interesting pha
under a subtle balance between the two conflicting tend
cies. The phase diagram in thea,« plane was explored by
Kaneko@1#. Let us explain the phases, choosinga51.80 for
definiteness. This is far above the criticalitya51.401 . . . to
the chaos for a single logistic map.~i! For a sufficiently large
« (*0.38) the maps are strongly bunched together in a c
ter in the final attractor, and evolve chaotically as a sin
logistic map. This is the coherent phase. ~ii ! For
«50.22–0.30, the interaction via the mean field no long
exerts a strong bunching, and the final maps divide into
clusters. The maps in each cluster are still tightly synch
nized with each other, and the two clusters mutually oscill
oppositely in phase. This phase turns out to be a solutio
a minimum fluctuation in the mean field, and is called
two-clustered ordered phase. ~iii ! For smaller«, the number
of final clusters increases, but it remains independent of
total number of maps in the system. The typical number
clusters at various« ranges is indicated in the phase diagra
@1#. ~iv! Finally, for a very small« the number of clusters is
in general proportional toN. This region is called theturbu-
lent regime. This is the target region of our analysis.

It is known that in the turbulent regime maps evolve
most randomly at a small lattice sizeN, and that there occur
a subtle correlation—a hidden coherence—at largeN. But, as
we show below, there actually emerge drastic global perio
motions of maps if the« ’s takes certain values for a givena.
Let us first briefly review previous observations in the lite
ture.

~i! The final state of the GCML in this regime iterate
from a random configuration consists of maps and tiny cl
ters, each moving chaotically due to high nonlinearity. T
number of elements~maps and clusters! is proportional to the
number of whole maps, in sharp contrast to the ordered
gime @2#.

~ii ! There emerges a certain coherence between elem
when the sizeN is large @2,4#. If xi(n) ( i 51, . . . ,N) are
really independent random variables following a comm
probability distribution, the mean squared deviation~MSD!
of the mean fieldh(n) (dh25^h2&2^h&2 with ^•••& here
meaning the long time average! should decrease proportion
ally to 1/N by the LLN, and theh(n) distribution must be a
Gaussian for sufficiently largeN by the CLT. However, there
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is a certain threshold inN ~depending on botha and«) above
which the MSD ceases to decrease even though the dist
tion remains Gaussian; the CLT holds but not the LLN@2#.
This reflects some hidden coherence between the map
evolution. In fact the LLN is restored when a tiny noise ter
is introduced in each map independently@3,4#.

~iii ! The violation of the LLN reflects that the map prob
ability distribution r(x) depends on time. Indeed, a nois
intensity analysis of ensembles successfully proves the L
@3#. If the LLN should hold in the time average,r(x) would
have to be a fixed point distribution of the Frobenius-Per
evolution equation@15#. It has been argued that the fixe
point distribution may be unstable due to the periodic w
dows of the logistic map@4#, though this point is controver
sial. For instance, on tent maps, the same instability occ
but no periodic windows are present@16#. The coherence
manifests itself in mutual information@2#. On the other hand
a temporal correlation function similar to the Edward
Anderson order parameter for the spin glass@14# decays to
zero exponentially. Thus it may not be due to freezing b
tween two elements@2#.

The hidden coherence was found in a statistical anal
of the mean field fluctuation@2#. But there has been no repo
of an extensive statistical analysis which covers the wh
turbulent regime as well as a wide range of the system s
Once we have done this, we are faced with a bizarre fea
of the turbulent regime: the hidden coherence is one th
but there also occur drastic global periodicity manifestatio
The above lists are correct but need reservations.

For ~i!, there is a need for a careful reservation on t
coupling values. We show below that, when the coupling«
takes small but tuned values for a givena, the maps
again—as in the ordered phase—may split into a few bo
clusters in periodic motion. The most striking manifestati
of periodicity in this form is states of almost equally pop
lated clusters mutually oscillating in the same period with
number of clusters. We call this type of periodicity manife
tation, MSCA, and present the tuning condition for it belo
We label such a cluster attractor by the periodicity and
number of the clusters. For instance, we call the outstand
period-3 symmetric cluster state thep3c3 MSCA. There
also occurs a bifurcatedp3c3 MSCA. The MSD of theh(n)
distribution is very small in the MSCA or its bifurcated stat
because of the good population symmetry among the c
ters. At slightly larger«, we observe that the number o
clusters decreases while the orbits are approximately
tained. A cluster attractor of this type (p.c) leads to a large
MSD, which is independent ofN.

As for ~ii !, we show below not only the LLN but also th
CLT is violated in almost all regions in the turbulent regim
We pin down the very limited regions in the turbulent regim
where the CLT holds with a violated LLN; only there ma
the term ‘‘hidden coherence’’ be used.

As for ~iii !, the decay exponent of the temporal correla
of the mean field fluctuations gradually decreases with
deviation of the coupling from the tuned value. According
theh(n) distribution successively changes its shape from
highest rank sharpd peaks down to the MSD-enhance
Gaussian distribution—the hidden coherence. This indica



th
ig

it
in

o
e
on

an

ys

D

Th

r

e
r

nd
in-

lley
s

c-

a-

e

he
u-

er

dal

nd,
It

.

dom
n-
o is
the
an
sity

tri-

le
a

the

m-
ot,
nvo-
n, is

was
ed
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that the hidden coherence at the MSD valley may be
most modest periodicity remnant, being elusive due to h
mixing.

The GCML can be defined in a one line equation, but
turbulent regime challenges us with so many faces rang
from a manifest periodicity to the hidden coherence. W
consider that it is important to explore the systematics
periodicity manifestations by an extensive statistical surv
and present a sorted list of phenomenological observati
Below we first devote ourselves to this task.

III. PHENOMENOLOGY OF THE TURBULENT REGIME

A. Systematics in the mean field fluctuations

We start with an analysis of the distribution of the me
field fluctuation in time. In Fig. 1 we show its MSD ata
51.90 as a surface over theN2« plane, which overlays a
density plot of the periodicity rank of theh(n) distribution.
In order to set sufficiently fine grids for the surface, the s
tem size is limited in the rangeN,43103. For a wider
range of N, in Fig. 2 we show the sections of the MS
surface atN in powers of ten up to 106.

1. Peak-valley structure of the MSD surface

First let us discuss the MSD surface and its sections.
linear edge of the surface at«50 is of course due to the
LLN. For a nonzero but very small« (&0.01), the LLN still
holds to a good approximation but otherwise we can clea
see that the surface has many peaks along theN axis—the

FIG. 1. The MSD surface of a mean field fluctuation~top!, and
the gray-scale density plot for the rank of distributions~bottom! on
the«2N grid. a51.90, and the inclementD«5231023. The rank
varies from zero~black! to 4 ~white!.
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violation of the LLN in the time series.1 There is a prominent
peak at «'0.040–0.050—an extreme violation of th
LLN—and in this « range the MSD is in excess even fo
N'102. In front of the peak there is a deep valley arou
«'0.035. We show below this peak and this valley are
duced, respectively, by thep3c2 cluster attractor and the
p3c3 MSCA ~and its bifurcated state!. Apart from these, the
MSD surface systematically shows successive peak-va
structures at largeN. We can see clearly in Fig. 2 how thi
structure is formed with an increase ofN. At MSD peaks the
LLN violation starts as early asN5102–103, while in the
valleys one has to wait untilN5103–104 in order to observe
it. ~In both cases, it starts to prevail from the larger« side.!
This twofold occurrence of the LLN violation leads to su
cessive peak-valley structures aroundN'103, which become
outstanding atN'104. Beyond that, up to the largest an
lyzed N (5106), the MSD is independent ofN, except for
«&0.005, where the maps still approximately follow th
LLN.

2. Mean field distributions

Now let us discuss the mean field distributions. In t
rank density plot—the bottom panel of Fig. 1—the distrib
tion is assigned a rank as follows.

~0! The distribution is Gaussian.2 The MSD is the same
within 20% error with that at«50 with commona andN.

~1! Gaussian but with a sizably enhanced MSD~the hid-
den coherence!. The MSD can be even factor of ten larg
than the MSD by the LLN.

~2! A singly peaked distorted Gaussian, or a trapezoi
distribution.

~3! Either it has a few sharp peaks on top of a broad ba
or it is an apparent overlapping Gaussian distribution.
manifestly shows the periodic motions of the maps.

~4! The distribution consists of a few sharp peaks only
At rank 0 theh(n) distribution obeys both the LLN and

CLT, and the maps may be thought as independent ran
numbers with a common probability distribution. Co
versely, at rank 4 the maps are in periodic motion, and s
the mean field. The ranks are organized in a way that
periodicity of the elements becomes more manifest with
increase of the rank. The MSD surface and the rank den
plot both together reveal a simple rule:The MSD is high
wherever the rank is high, and vice versa. The rank dis
bution plot is almost a contour plot of the MSD surface.3

1This does not imply the real violation of the LLN in the ensemb
average@3#. The violation of the LLN means here that there is
larger fluctuation in the time series ofh(n) than expected by the
LLN. We are interested in detecting the coherence among
evolving elements by the enhanced MSD.

2The h(n) distribution cannot be a precise Gaussian, as it is li
ited in @2xL ,xL#. When we discuss whether it is Gaussian or n
we are concerned whether the essence of the CLT, that the co
lution of independent random distributions peaks like a Gaussia
in action or not.

3The assignment of rank to each of thousands of distributions
a painful task. It was thrilling that two independently determin
diagrams turned out to be a perfect match.



and

3492 PRE 62TOKUZO SHIMADA AND KENGO KIKUCHI
FIG. 2. Central diagram: the MSD ata51.90 as a function of« over«5020.10 with inclement 1024. ~a! N5102, ~b! 103, ~c! 104, ~d!
105, and ~e! 106. Top boxes: Theh(n) distributions at the MSD peaks. All are rank 3. Bottom: the same at valleys. All are rank 1
correspond to the hidden coherence.
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3. Regularity in the MSD enhancement

The above rule persists for largerN as well. In Fig. 2, for
N5106 we show theh(n) distributions at MSD peaks in th
upper small boxes, and at valleys in the lower boxes. We
the following.4

~i! At any MSD peak, the rank is always high—rank
This tells us succinctly that the high MSD is induced by t
maps evolving in a quasiperiodic motion at the peak« val-
ues.

~ii ! On the other hand, at any MSD valleys, the rank is
~the MSD-enhanced Gaussian!, and reflects the hidden co
herence.

In brief, the MSD peaks at large N come from the qua
periodic motion of the element maps, and the hidden coh
ence is restricted to the MSD valley at large N.

4These two rules actually hold forN5104 up to the largestN
(5106) of our analysis. See below for a further discussion on thN
dependence of theh(n) distribution.
d

-
r-

We should add that the most prominent MSD peak a
the deepest valley at the front of it are two extremes. At
former (0.040,«,0.050), the distribution is either rank
or even 4 and the MSD peak starts even at smallN. The rank
4 distribution exhibits a periodic coherent motion of map
We show below that this is due to the formation of ap3c2
cluster attractor; the lack of one cluster leads to a high MS
At the latter, the distribution is also rank 4, but the MS
suppression is realized by the symmetrically populatedp3c3
MSCA. We will briefly investigate the periodicity manifes
tation in general below, introducing other phenomenologi
means as well.

4. Hidden coherence revisited

The coherence, as observed by the violation of the LL
occurs at any« value in the range 0.005–0.12, except th
the onset of the violation is earlier at MSD peaks~see Sec.
III A 1 !. But the hiddencoherence implies more: the MSD
must be enhanced, but the mean field distribution must
main Gaussian—the rank must be 1.
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To pin down the regions of the hidden coherence on
«-N plane, let us investigate the change of theh(n) distri-
bution with the increase ofN. Figure 3 exhibits a typica
case,«50.0682, corresponding to one of the MSD peaks
a51.90. Just when the LLN violation starts atN5102–103,
the rank becomes 1. However, notably, forN beyond 103, the
rank soon becomes 2 and simultaneously the MSD pe
valley structure appears. ForN*104, the rank becomes 3
and the peak-valley structure becomes remarkable. The
gions of hidden coherence are thus restricted to a very s
part. Excepting the transitive regionN'102–103, only MSD
valleys for theh(n) distribution to remain Gaussian, an
further, only inN*104 for the MSD is enhancement.~The
deepest MSD valley must be also excepted, since we obs
the apparent periodic motion ofp3c3 MSCA.!

B. The periodicity manifestation in the turbulent regime

The MSD peak-valley structure reflects a periodic
manifestation in the turbulent regime at various streng
depending on the value of«. Let us substantiate this issue b
the following quantities:~i! the distribution of maps and the
mean field,~ii ! map orbits,~iii ! the temporal correlator o
maps,5 and~iv! the return map ofh(n). In Fig. 4,a is set at
1.90, and the above quantities are listed in a row for e
typical iteration at a characteristic«. The lattice size is fixed
at N5103 in order to shed more light on the predomina
period-3 window than the other windows.

1. p3c3 MSCA: the event at«Ä0.036

Let us first investigate the region of the deepest M
valley. In the map orbits we clearly find three lines showi
the period-3 motion of maps in three clusters, and the m
distribution shows threed peaks. The mean field~the black
circle! is almost constant due to the high population symm
try, and accordingly theh(n) return map shows three almo
degenerate points. The temporal correlator oscillates in
riod 3. All exhibit the formation of thep3c3 MSCA.

There is a slight subtlety in that the state is actua
bifurcated—six clusters of maps with almost equal popu

5C(t)5^x̃(n1t)• x̃(n)/ux̃(n1t)uux̃(n)u&, with the relative vector

x̃(n)[„x1(n)2hn , . . . ,xN(n)2hn…. The averagê •••& is taken
over n for the last 1000 steps.

FIG. 3. The variation of theh(n) distribution with a system size
N at a51.90,«50.0682, andN533101, 53102, 23103, and 105

from left to right. Each is sampled in 105 iterations from a random
start, discarding the first 104 steps, and compared with a referen
distribution ~rank 0!. The rank is given on top.
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tions in the bifurcated period-3 motion. This is seen by t
tiny split in the orbits near zero.6 For a51.90, the bifurcated
p3c3 MSCA is always formed at«'0.035, while at slightly
higher « ('0.037–0.041! the final state is either a genuin
p3c3 MSCA ~90%! or an unstable period-3 cluster with hig
rate mixing ~10%! depending on the initial configurations
We will come back to this point in Sec. V below.

2. p3c2 cluster attractor state: the event at«Ä0.042

At the nearby stronger coupling («'0.041–0.051!, the
maps almost always split into two clusters with a populat
ratio of approximately 2:1, and the two clusters oscillate m
tually in period 3. The map orbits sampled at«50.042
clearly exhibit thisp3c2 state. The mean field oscillates
period 3 with a large amplitude due to the lack of one of t
MSCA’s, and hence leads to a prominent MSD enhan
ment.@Also see the three largely separated points in theh(n)
return plot, as well as the temporal correlator in period
motion.# Note that this high MSD is independent of the num
ber of mapsN—a way of violating the LLN—simply be-
cause the largeN GCML dynamics is reduced to that of tw
clusters. The MSD is solely determined by the scale given
the cluster orbits and the populationratios. As a check let us
try an estimate of the MSD. For the population ratiou1 :u2, it
is given by

~dh!25~S/3!~u1
21u2

221/3!2~2T/3!~u1
21u2

22u1u2!,

u11u251, ~3.1!

with S5(xk and T5(xkxk11. Let us take as approxima
tions u1 :u252:1, and theorbit pointsxk at the tangent bi-
furcation point.7 Then we obtain (dh)2525/(337)'0.169,
in good agreement with the observed value 0.1660.01.

3. Peripheral point to the p3c3 MSCA: two events at«Ä0.032

Here we have to account for the first transient behavio
the maps. In event~A!, the maps drop into ap3c3 cluster
attractor after a long iteration~at n'83104), while in event
~B! they remain in a few unstable clusters in mutual period
motion until the last. Event~A! is essentially the same with
the p3c3 MSCA event. We should only note that the bro
lower band in theh(n) distribution is an artifact of the firs
transient motion of maps. In event~B!, the clusters are un
stable, and there is a mixing of maps between the clust
hence we can see only three clouds in theh(n) return map.
But the mixing rate is not so high as we can see from
gradual exponential decay8 of the correlator witht'140,
which clearly showsa damped oscillation in period 3.

6The six orbit points consist of three doublets of points, and
two points in a doublet are very close each other. We have chec
this numerically, but the map distribution with the bin size
31023 shows only threed peaks.

7a57/4 andxk52/2118/(3A7)cos@(u12kp)/3#, k50,1,2, with
u5tan21(3A3) for the stable set. Numerically,~0.9983,20.7440,
0.03140!.

8We uset, the number of steps in which the correlator decrea
to 1023, as an estimate of the mixing rate.
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FIG. 4. The variation of the
GCML dynamics with« through
the prominent MSD peak region
N5103 GCML with a51.90, and
the total iteration steps are 105 for
each run.~a! The mean field dis-
tribution ~marked ash), discard-
ing the first 104 transient steps and
the map distribution~x! averaged
over the last 23103 steps. ~b!
Clustering pattern. The lines ar
orbits of randomly selected 102

maps for the last seven steps, an
the black circle is the mean field
~c! Temporal correlator between
the two relative-coordinate vec
tors of the maps. Averaged ove
the last 103 steps.t'0, 30, 70,
140, `, `, `, 50, and 0 for«
50, . . .,0.056. ~d! The return
maps for the same steps as~c!.
The arrows indicate the period
three clusters.
A
a
ta
a

p
t

tic
in

in
od
-

nd

nd
i-
n.
of

r is

ge
e-
pe-

e

4. Variation of dynamics with«

Let us have a bird’s eye view of Fig. 4. The row from«
50 to 0.042 is the path from randomness to periodicity.
«50 the maps evolve freely in pure randomness. In this m
distribution we observe many sharp peaks with a frac
structure. These reflect unstable fixed points of a single m
But the h(n) distribution—the convolution of the ma
distribution—is Gaussian due to the CLT. It is sharp due
the LLN. The maps evolve randomly in a simple logis
pattern, and the correlator decays almost instantly. With
creasing coupling«, the coherence between maps is
creased. The correlator reveals the precursor of the peri
cluster attractor by itsp53 oscillation, and becomes pro
longed. The map distribution turns into three broad ba
losing subpeaks, and finally turns into sharp threed peaks.
t
p
l
p.

o

-
-
-3

s

Because of the increased coherence, theh(n) distribution
retains the orbital structure even after the convolution, a
the rank of theh(n) distribution is gradually increased. F
nally the rank-4 distribution appears in the period-3 regio

In the period-3 region, we first observe the formation
the p3c3 MSCA, and at slightly higher« the p3c2 cluster
attractor. This region continues up to«'0.050.

Beyond this, everything proceeds oppositely until«
'0.058. The rank gradually decreases and the correlato
shortened. Figure 4 ends at this position. At larger«, the
MSD shows small peaks and valleys in the ran
«'0.06–0.1. Above«'0.10 the correlator catches the pr
cursor of the ordered two clustered regime. The path to
riodicity is repeated, and eventually the period-2 regim
starts around«'0.2.
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This is a bird’s eye view of the turbulent regime ata
51.90 andN5103. For largerN(*104), the MSD surface
shows peaks and valleys more remarkably. The bulk of
above variation of the dynamics with« also holds at the loca
scale, for each nearby pairing of a peak and valley. The p
h(n) distribution is rank 3 and, with the change of« to
nearby valley values, the rank gradually decreases down
At the higher~lower! nonlinearitya, we observe the sam
dynamics if the coupling is shifted to the larger~smaller!
side with appropriate amount. For instance, the period-3
tractor region«'0.032–0.050 ata51.90 is shifted to«
'0.06–0.08 ata52.0. This suggests curves of the balan
in the a,« parameter space. But why are the period 3 attr
tor states formed at this particular« region? Are there no
other cluster attractors with different periodicities? Our n
task is to answer these questions, deriving the curves of
balance analytically.

IV. AN ANALYTIC APPROACH

A. Tuning condition and period-3 clusters

Let us consider an idealized~exact! MSCA. It is a state of
a GCML under three conditions:~i! the N maps of the
GCML split into c clusters with an exact population symm
try; ~ii ! the synchronization of maps is perfect, so that th
is no variance of map positions in each of the clusters;
~iii ! the clusters mutually oscillate aroundp5c orbital
points. Using this idealized state as a key, below we de
the tuning condition for the MSCA formation. For brevit
we explain our approach with respect to thep3c3 MSCA in
detail, but everything below also holds for the other MSCA
with higher periodicities. In ap3c3 MSCA three clustersA,
B, C move cyclically round three fixed positionsX1 , X2, and
X3. Such a system of orbital points exists as a triple int
section point of three surfaces given by

S i : Xi512aFXk
21

«

3
~Xj

21Xk
222Xi

2!G ,
~ i , j ,k!P$~1,2,3!,~2,3,1!,~3,1,2!%. ~4.1!

At a51.90, and «50.040, for instance, we have tw
solutions (0.96301,20.00499,20.72851) and (0.95521
0.07076,20.69993); the former is stable, and the latter
unstable. In such an exact MSCA, the mean fieldh(n) is a
time-independent constant,

h~n![
1

N (
i 51

N

f „xi~n!…5
1

3 (
I 5A,B,C

f „XI~n!…5
1

3 (
i 51

3

f ~Xi !

5
1

3 (
i 51

3

Xi[h* , ~4.2!

whereXI(n) denotes the coordinate of the clusterI at timen,
and the last equality follows from Eq.~2.2! or ~4.1!. There-
fore, if a MSCA is produced, the GCML evolution equatio
~2.1! becomes

xi~n11!5~12«! f a„xi~n!…1«h* ~ i 51, . . . ,N!,

~4.3!
e

ak

1.

t-

-

t
he

e
d

e

-

f a~x!512ax2,

where the time-dependent termh(n) is replaced by a con-
stanth* . Every one of the maps evolves by a common eq
tion at each step in Eq.~2.1!, and further by a unique con
stant equation in Eq.~4.3!. As noted by Perez and Cerdeir
@17# some years ago, we can cast this unique equation in
standard logistic map with a reduced nonlinear parameteb,

yi~n11!512b„yi~n!…2 ~ i 51, . . . ,N!. ~4.4!

by a linear scale transformation

yi~n!5~12«1«h* !21xi~n!, ~4.5!

and the reduction rate of the nonlinearity parameter is gi
by

r[
b

a
5~12«!„12«~12h* !…. ~4.6!

At the MSCA, the mean fieldh* is constant, so the reductio
factorr is also constant. If the clusters of the MSCA oscilla
in period 3, so do the mapsyi(n)—the two solutions
(x1 ,x2 ,x3)(n) (n51,2) of the cyclic equation~4.1! agree
with the two sets of period-3 orbit points„y(n),y(n
11),y(n12)…(n) (n51,2) of the logistic map~4.4! modulo
the scale factor in Eq.~4.5!. The reduction factorr must
reduce the high nonlinearitya of the GCML down tob in the
period-3 window. It starts atbth[7/4 by the tangent bifurca
tion and, after sequential bifurcations and windows in t
window, it closes atb51.79035 by the crisis. The range o
the period three windowb51.75–1.79035 requires a redu
tion factor r in the range 0.942–0.921 fora51.90. Eachr
within this range gives a constraint curve9 on «,h* plane via
Eq. ~4.6!.

There is another constraint from self-consistency; the
erage valuey* of the transformed maps must also obey E
~4.5!, so that

y* [
1

3 (
i 51

3

yi5~12«1«h* !21h* . ~4.7!

Here y* is a function of the nonlinear parameterb—it is
simply an equal weight average of the period-3 stable or
of the single logistic map@Eqs.~4.4!#, and can be estimate
solely by the property of the logistic map without any r
course to the GCML evolution equation. At a giveny* this
again gives a constraint curve on the«,h* plane. Let us
work out « at the intersection of the two curves. By elim
natingh* from Eqs.~4.6! and ~4.7!, we obtain

«512
ry*

2
2Ar ~12y* !1S ry*

2 D 2

, ~4.8!

and bothr 5b/a and y* on the right hand side are dete
mined byb. This is thetuning condition. This predicts the

9It is possible to transform Eq.~2.1! formally to a standard form a
each step, but then the reduction factorr may fluctuate step by step
Then it does not single out a line.
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TABLE I. The p53 periodicity manifestation in the turbulent regime.a51.90, andN5104–106.

« range Prediction MSD surface State

0.032–0.0352a–0.037 0.0305–0.035192–0.0363 deep valley bifurcatedp3c3 MSCA
0.037–0.041 0.0363–0.0422 lower band p3c3 MSCA
0.037–0.041 upper band p3c2 cluster attractor
0.041–0.050 0.0422–0.0514 prominent peak p3c2 cluster attractor

aThe downwards cusp position of the MSD valley.
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necessary valueof the coupling« for the GCML at a givena
to form a MSCA due to the periodic attractor of the sing
logistic map withb. The functiony* (b) is a well-known
square well.y* '0.284 atb51.735, slightly below the tan
gent bifurcation pointbth , and it drops sharply (y* 2yth*
}Abth2b) at bth . From a matching of the coefficients i
( f b)3(y)2y5b6

„f b(y)2y…„P i 51
3 (y2yi)…

2, we obtain yth*
51/(332b)52/2150.095. Similarly y* (b)5(1
2A4b27)/6b up to the first bifurcation pointb51.769.
Then y* (b) varies smoothly10 around 0.08 until the end o
the window (b51.7903), and finally increases sharply (y*
'0.18 atb'1.793). Thisy* (b), put into Eq.~4.8!, gives the
following estimates of« for a51.90:

A: «50.0514 at ~b,y* !5~1.735,0.284!, r 50.913,

B: «50.0422 at ~b,y* !5~1.750,0.095!, r 50.921,
~4.9!

C: «50.0363 at ~b,y* !5~1.769,0.069!, r 50.931,

D: «50.0305 at ~b,y* !5~1.790,0.080!, r 50.942.

EstimatesA, B, C, and D are below the threshold, at th
threshold, at the first bifurcation point in the window, and
the closing point of the window, respectively. Note that rou
A→D is in the direction of increasingb, which in turn is the
direction of the decreasing coupling constant«, since the
larger b requires only a smaller nonlinearity reduction. W
should stress that tuning condition~4.8! is a necessary con
dition. For thep3c3 MSCA to be stable, the orbit of th
reduced logistic map must be also stable.11 A period-3 logis-
tic orbit still continues to exist even beyond the first bifurc
tion pointC, but it is unstable. Therefore, for an exactp3c3
MSCA to be formed, the« range must be within the est
matesC-B, but neither withinD-C nor beyondD. Similarly,
an exact bifurcatedp3c3 MSCA must be formed withinD-
C. Our tuning condition does not guarantee the formation
the MSCA but it does limit the« range in which the forma-
tion is possible. The observed ranges of thep3 cluster attrac-
tors are listed in Table I. Ata51.90, a p3c3 MSCA is

10The largest rapid variation is the tiny anti square well (Dy*
'0.01) due to the 333 window atb51.7858–1.7865.

11As we show in Sec. V, the Lyapunov exponents of the GCML
the p3c3 MSCA generally consist of an (N23)-fold degenerate
one and three nondegenerate ones. For thep3c3 MSCA to be
stable, at least the former degenerate exponent must be neg
which implies that the reduced map orbit must be stable. Tha
these exponents are negative at the MSCA is also shown belo
t

-

f

formed in the range«'0.037–0.041, and its bifurcated sta
in «'0.032–0.037. The predicted ranges are«
50.0363–0.0422 and 0.0305–0.0363, respectively. In b
cases, the agreement is remarkable, and we see that the
mation actually occurs at any allowed« value.

As for the p3c2 cluster state, we need caution in usin
the tuning condition. This condition is derived under the a
sumption of a constancy of the mean field. Thus, as a ma
of principle, it cannot be applied for the asymmetrica
populated state. However, thep3c2 state is formed with a
slightly higher coupling«, and the orbits of two clusters ar
approximately the same with the MSCA orbits. Therefo
the p3c2 cluster attractor is certainly still under the contr
of the period-3 window. We estimate the range by the ext
sion of the period-3 window at the higher coupling sideB-
A—the intermittency region. This gives«50.0422–0.0514,
in good agreement with the observed range of thep3c2
cluster attractor ('0.041–0.050!. It is interesting to note tha
the GCML final states at this« range actually consist of two
types depending on the initial condition; thep3c2 cluster
attractor ('80%), as well as unstable period-3 clusters w
mixing of maps~the rest!. See Fig. 6 below. The estimateB-
A intriguingly relates the intermittency of the element map
the GCML phase of coexistent stable and unstable perio
clusters. We are aware that we cannot take the success o
estimate forp.c states on the same footing as that for t
MSCA, but at least it gives a good rule of thumb for thep
.c state.

B. Foliation of the logistic windows in the turbulent regime

What is the case for othera values? Do the other window
also show up in the expected« range in the turbulent re
gime? To check these questions systematically, let us n
that the tuning condition defines a one-parameter~b! family
of curves in the model parameter space~thea,« plane! of the
GCML. Each curve is labeled byb, and written as a function
of the reduction factorr as

„a(b)~r !,« (b)~r !…

5Xb
r
,12

ry* ~b!

2
2Ar „12y* ~b!…1S ry* ~b!

2 D 2C,
r<1. ~4.10!

This emanates from the point (a(b),« (b))ur 515(b,0), and
with the decrease ofr it develops in the parameter spac
inthe direction in which botha and « increase in a certain
balance. If our success above is a general one, all GCM
with parameters set at„a(b)(r ),« (b)(r )… along a curve labeled

t

ive,
ll
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FIG. 5. The MSD of the mean field distribu
tion plotted as a function« for N5104 GCML in
panels ata51.8 ~back!, and 1.85, . . . ,2 ~front!.
«50 –0.12 with inclement 1024. The foliation
curves predicted forp54, 5, 3, 7, and 5 windows
flow underneath panels, and link the respecti
shaded foliation zones. For each zone there i
MSD valley at lower«, and a peak at higher«.
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by b should be commonly controlled by the same dynam
of the single logistic map atb.

In Fig. 5 we find that this is indeed the case. Each pa
shows the MSD of theh(n) distribution as a function of« at
a givena as well as the expected zones for the manifesta
of the outstanding six windows in Table II. Curves~4.10! are
displayed underneath the panels, and link the respec
zones. At each zone, a MSD valley due to the MSCA sho
appear in the lower« side, and a MSD peak byp.c cluster
attractors at the nearby higher«. We find that this works
with almost no failure in all panels, and with respect to
six windows.

The effects of the logistic windows propagate alo
curves ~4.10!, which may be calledfoliation curves. The
curve with the labelb links together those GCML’s com
monly subject to the same logistic window dynamics atb.
Accordingly the family of curves produces afoliation of the
s

el

n

ve
d

l

single map dynamics. The foliation occurs because, un
the global interaction, the maps of the GCML form a ma
roscopically coherent state. Even though the coupling in
turbulent regime is very small, the coherence prevails o
the GCML maps if the tuning condition is met. A few re
marks are in order.

(1) Desynchronization along the foliation curve. The pe-
riodicity manifestation becomes weakened at a higher red
tion, and there is a thresholdr th'0.95. For r'1, both
MSCA and associatedp.c clusters are formed in tight syn
chronization. Towardr th'0.95, the clusters broaden. The
is no mixing among the clusters as yet, but the maps m
chaotically in each cluster. Belowr th , we observe only the
periodicity remnants—on the one hand the overlapp
Gaussianh(n) distribution along the curve which had th
p.c cluster abover th , and on the other hand the MSD
0014
0089
0009

0403

0017
0021
TABLE II. The outstanding windows and theirb, y* (b) values.

Period A: intermittencya B: lower threshold C: the first bifurcation D: closing point Widthb

7 1.5740, 0.3943 1.5748, 0.3857 1.5754, 0.3846 1.5762, 0.3847 0.
5 1.6220, 0.3610 1.6244, 0.3077 1.6284, 0.3012 1.6333, 0.3032 0.
7 1.6735, 0.3189 1.6740, 0.2676 1.6744, 0.2678 1.6749, 0.2677 0.

3 1.7350, 0.2836 1.7500, 0.0952 1.7685, 0.0685 1.7903, 0.0800 0.

5 1.8597, 0.1823 1.8606, 0.0984 1.8614, 0.0990 1.8623, 0.0987 0.
4 1.9390, 0.1287 1.9406, -0.1633 1.9415, -0.1668 1.9427, -0.1657 0.

aThe starting point of intermittency.
bDb[bB2bD .
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TABLE III. Samples of the sequences of attractors withp>c. N5104, anda in parentheses.

p54: b:1.9406–1.9427a (a51.95, r'0.995)

c 4 ~MSCA! 3 2
« 0.0019–0.0022 0.0022–0.0024 0.0024–0.0026

«pred
b 0.0020–0.0022 0.0022–––– –––0.0030

p55: b:1.6244–1.6333a (a51.66, r'0.980)

c 5~MSCA!c 4 3
« 0.00986–0.0118 0.0114–0.0124 0.0124–0.0130

«pred
d 0.00950–0.0112 0.0112––– –––0.0140

aThe range of the window fromB to D, i.e., the intermittent region is not included.
bThe« range predicted by the tuning condition and the window data in Table II. The predictions are froC-
B for MSCA andB-A for p.c states.
cFor most events, the attractor is either bifurcated or consists of five bands.
dD-C for a MSCA andC-A for a p.c cluster attractor, taking into account the bifurcation.
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enhanced Gaussian~the hidden coherence! along that of
MSCA. See Fig. 2.

(2) Left-right asymmetry of the MSD curves. The MSD
curves in Fig. 5~and 2! show an interesting feature—in eac
panel the smaller« region~the left! has an ample amount o
peaks and valleys, while the larger only a few broad ones
for the single logistic map, on the other hand, there are
many windows in the smallerb as in the larger.

This is naturally understood by the difference in the
duction factorr between the zones in a panel. In a way, ea
panel is a screen which displays the windows of the sin
logistic map by using a macroscopic coherent state of
GCML. But the panels set at fixeda values are inclined—a
smaller« ~the left! implies less reduction, i.e.r'1. r th di-
vides the panel at«'0.030 via Eq.~4.8!. The left sensitively
displays the sharp peak-valley structure induced by clu
attractors. The right, on the other hand, can reflect only
accumulation of the periodicity remnants from nearby w
dows, being dominated by the prominent one at its respec
zone. As a check we set the panels at fixedr values. Then
they displayed windows without asymmetry, and with
higher sensitivity atr closer to one@18#.

(3) Cluster attractors with higher periodicity. Let us
search cluster attractors with a periodicity higher than
Here we give two samples in Table III.

p54 clusters. These appear in the left most zone in t
a51.95 panel. From the windowb data in Table II the nec-
essary reduction froma is very small—r'0.995—so we ex-
pect definite clusters. We indeed find the expected sequ
of clusters12 p54, c54(MSCA)→3→2, in tight synchro-
nization at the right«.

p55 clusters. There are twop55 windows in Table II.
We choose the one at the lowerb and setb51.66, which
amounts tor 50.980. Sincer is in the midst of 1 andr th , we
expect the clusters are not in complete synchronization,
yet there is no mixing of maps. Indeed the sequence of

12The single cluster cannot be formed. The focusing by averag
does not act there, and the tiny variance is instantly amplified
appears far in the coherent phase («*0.4 ata51.90).
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tractorsp55, c55(MSCA) → 4→ 3 is observed at the ex
pected«, and it terminates before the lowest one (p5c2).

V. STABILITY OF THE PERIOD THREE CLUSTERED
MAP STATES

Here we adopt the Lyapunov analysis. As one superla
ability, it can be applied to both diverging and convergi
system orbits, so that it can detect the possible coexistenc
multifold finial states depending on the initial configuration
We measure the maximum Lyapunov exponentlmax by a
standard method@19# which keeps track of anN-dimensional
shift vectordx(n) evolving under the nonautonomous linea
ized equation associated with Eq.~2.1!:

dxi~n11!522aH S 12«1
«

ND xi~n!dxi~n!

1
«

N (
j Þ i

xj~n!dxj~n!J . ~5.1!

lmax is the average of the logarithm of the expansion rate
the shift vector ~with intermediate renormalizations!. For
both lmax and the MSD, we discard the first transient 14

steps—generally it takes only 102–103 steps for the cluster
formation.

Let us first check the« dependence of the stability o
attractors. We chooseN5106, fix a at 1.90, and vary« in the
range 0.030–0.052 with the inclementD«51024. In Fig. 6
we showlmax in the upper part and the MSD in the lowe
part.13

In thelmax plot we observe three remarkable structures
low lmax events.

~i! A seagull structure(«50.032–0.037! with a sharp
cusp at«50.0352—all events are bifurcated MSCA’s wit
good population symmetry@NI /N'(160.05)/6#. Note that
the events form also a seagull in the MSD, and the c

g
It

13For reference, the CPU time for theN5106 GCML is approxi-
mately 2 min for one measurement oflmax (212 steps for precision
1024) plus the MSD (104 steps! on a modest supercompute
VPP300/6. The total is 2 min340 ~initial configurations! 3220 («
values)'300 h.
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positions agree precisely.The bifurcated MSCA is mor
stable if the mean field fluctuation is lower, and it is mo
linearly stable(lmax520.38) with the minimum fluctuation
(dh2'231026).

~ii ! The first low band(«50.037–0.041!—the p3c3
states. The population distributes around an exact MSC
u I[NI /N'(160.15)/3. The events near the lower boun
ary (lmax,0) arep3c3 events with good population sym
metry and with a low MSD.

~iii ! The second low band(«50.041–0.051!—the p3c2
cluster attractor. The corresponding MSD is, contrary to~ii !,
extremely high because of a lack of one cluster to minim
the h(n) fluctuation~see Sec. III B 2!.

The foliation of the critical pointsA, . . . ,D from the
period-3 window defines three« regions I (D-C), II ( C-B),
III ( B-A) @Eq. ~4.9!#. Region I is the allowed region for th
formation of the bifurcated MSCA (MSCA* ), region II the
p3c3 MSCA, and thep3c2 cluster attractor is expected i
region III. As we see clearly in Fig. 6, regions I, II, and I
embody structures~i!, ~ii !, and ~iii !, respectively, in agree
ment with our prediction.

Let us note a remarkable feature in the events in the
wings of the seagull~i!. Here all events come out with pos
tive lmax ('0.1–0.2!. For a system with low degrees o
freedom, the positivelmax implies chaos. But here, eve
with positivelmax, the maps always form a bifurcatedp3c3
state. There is actually no contradiction. The global mot

FIG. 6. The Lyapunov exponents~upper! and the MSD~lower!
measured for 40 random initial configurations at each« between
0.0300 and 0.0520 with inclement 1024. a51.90 andN5106. The
events in the seagull structures are in the bifurcated MSCA sta
the first lower band events in the MSCA and the second ones
p3c2 attractor. These are formed in regions I (D-C), II ( C-B) and
III ( B-A) separated by dashed lines, as expected. In bandsM, the
p53 clusters are unstable, and the maps mix among them wit
'100. The dashed line shows the predictedlmax for the exactly
symmetric MSCA. Arrows show the predicted positions of the m
linearly stable MSCA states.
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of the clusters is periodic, but, inside each cluster, maps h
evolve randomly with tiny amplitudes (&1022) in sharp
contrast against the complete synchronization at the c
The Lyapunov exponent measures the linear stability of
system with respect to the small deviation of the elem
position. It is sensitive to the microscopic motion of the e
ement of the system, and hence yields the positive expon
But for a larger deviation, nonlinear terms can become
evant and pull back the map.14 This type of map motion—
microscopically chaotic but macroscopically in the period
clusters—may be calledconfined chaos. We hereafter devote
ourselves into the investigation of two outstanding stru
tures, namely the bifurcated MSCA seagull and thep3c2
cluster attractor.

The linear stability analysis of the bifurcated MSCA.In
order to understand the salient cusp at«50.0352 in the
Lyapunov exponent plot, let us consider the linear stabi
matrix of the GCML.

~1! For the configuration of maps in six clusters, th
N3N linear stability matrix of the GCML for the evolution
of one step can be written as

14We have verified this by inputting pulses on randomly selec
maps. The analytic formulation of the nonlinear effect is most
sired.

s,
he

t

FIG. 7. ~a! The maximum Lyapunov exponent of the bifurcate
MSCA over the (s,t) plane.lmax for events in onest bin are aver-
aged, the sign is reversed (2lmax), andlmax.0 is truncated for a
bird’s eye view.a51.90, «50.035, andN5104, and there are
totally 23104 events.~b! The triangleDPMQ is the allowed (s,t)
region by the constraints>t, t>(12s)/2, 1>s1t. The bifurcated
MSCA events accumulate in the top of the shaded tinyDAMB,
which is again a tiny part ofDPMQ.
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M15~12«!S X1E1 ••• 0

0 � 0

••• ••• •••

0 ••• X6E6

D
1

«

N S X1H11 ••• X6H16

X1H21 ••• X6H26

••• ••• •••

X1H61 ••• X6H66

D ~5.2!

multiplied by an overall factor 22a, where XI(I
51, . . . ,6) are thecoordinates of the clusters,EI is an NI
3NI unit matrix, andHIJ is anNI3NJ matrix with all ele-
ments 1. TheN eigenvalues ofM1 consist of two sets. One i
a set of six eigenvaluesl (I )522a(12«)XI (I 51, . . . ,6),
each (NI21)-fold degenerate. The degenerate eigenvec
of l (I ) are of the form Col.(0; . . . ;0;(1,0, . . . ,0,
21,0, . . . ,0);0; . . . ;0), that is, all column blocks, each fo
one cluster, are fulfilled by0 except for theI th block which
has 1 as the first element and21 as one of the otherNI
21 elements. The eigenvector ofl (I ) represents a shift o
the system orbits within theI th cluster. The other is a set o
six ~in general nondegenerate! eigenvaluesl I , which are the
same with the ones of the 636 stability matrixM1;red asso-
ciated with the cluster evolution
in

si
6

er
e

rs

XI~n11!5~12«! f ~XI !1«(
J51

6

uJf ~XJ!, ~ I 51, . . . ,6!.

~5.3!

M1;red for the cluster dynamics is derived fromM1 by EI
→1 andHIJ→uJ . The eigenvector ofM1 subject tol I is
(j1

I 1; . . . ;j6
I 1), with (j1

I , . . . ,j6
I ) being that ofM1;red.

~2! The stability matrixM p of the GCML for the evolu-
tion of p steps is given by the chain product ofp of M1 along
the system orbit. The eigenvalues ofM p again consist of two
sets. One is the set of six eigenvaluesl (I )5@22a(1
2«)#p)k51

p XI
k , each (NI21)-fold degenerate, and the firs

set eigenvectors ofM1 remain the eigenvectors of this se
The other is the same with the ones of theM p;red—the pth
iterate of M1;red. This mechanism holds at any populatio
composition among the GCML clusters.

~3! Now, when the population symmetry among the clu
ters are exact, all of the maps obey a unique quadratic m
ping @Eq. ~4.3!# with a constant mean fieldh* which is
equivalent to a standard logistic map@Eq. ~4.4!# with a re-
duced nonlinearityb via the scale transformation~4.5!. Forb
from the first to the second bifurcation point in thep53
window (b651.76852915 tob1251.777221618), the re
duced mapy evolves in period 6, and so do the six GCM
clusters. This is the bifurcated MSCA. We can write t
correspondence as
y0 → y15 f b~y0! → ••• → y55~ f b!5~y0! → y05~ f b!6~y0!

S X1

X2

]

X6

D → S X2

X3

]

X1

D → ••• → S X6

X1

]

X5

D → S X1

X2

]

X6

D . ~5.4!

In the MSCA, all six eigenvalues ofM6 in the first set degenerate into a single valueL[@22a(12«)#6) I 51
6 XI , with

degeneracy( I 51
6 (NI21)5N26. From Eqs.~5.4!, ~4.5!, and~4.6! we find L5(22b)6) i 51

6 yi , that is,L is nothing but the
Lyapunov eigenvalue of the single logistic map for thep56 motion. As for the other set, theM6;red for the symmetric
configurationu I51/6 is a chain product of six matrices, that is,M1;red

6 M1;red
5

•••M1;red
1 with

M1;red
1 522aS ~12«1h!X1 hX2 ••• hX6

hX1 ~12«1h!X2 ••• hX6

A ••• � A

hX1 ••• ••• ~12«1h!X6

D , h5
«

6
, ~5.5!
ll in

ov

ur
x
t

and other five matrices are obtained by cyclically chang
the orbit pointsXI by Eq. ~5.4!. By a simple algebra using
Eqs. ~4.5! and ~5.4!, we find that the eigenvalues ofM6 in
the second set, which are in turn the ones ofM6;red, areL,
with corrections of orderh.

~4! Now we are ready to work out the seagull cusp po
tion. BecauseL is proportional to the product of the period-
orbital points of the single logistic mapf b , it becomes zero
when one of the orbital points becomes zero. At this v
instance, the N26 Lyapunov exponents becom
g

-

y

2` and the other six exponents also become very sma
proportion to log(uhu)/6. Theb is a solution off b

6(0)50 and
the relevant solutionbc51.772892 gives«c50.035192 and
lmax520.361519 for a51.90—both are in remarkable
agreement with the observed cusp of the GCML Lyapun
exponent.

Over the seagull« range, M6;red has four complex
@(lk ,lk* ), k51,2)] and two real eigenvalues and gives fo
exponents.lmax is given by one of the two sets of comple
eigenvalues, while the (N26)-fold degenerate exponen
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FIG. 8. ~a! The orbits of a
p3c2 cluster attractor for the las
512 steps. ~b! The maximum
Lyapunov exponents.~c! The
number of events in each bin
(Du51023) plotted at a popula-
tion ratio u for 18 341 events
~83%!, with stable cluster forma-
tion among totally 22 000 events
N5104, a51.90, and«50.048.
Dotted lines are used to draw th
eye, and to separate tightly boun
cluster states~central! and the
confined chaos~two edges!.
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from L runs in the midst of the four. The predictedlmax is
shown in Fig. 6, and explains the data well. The slight d
viation off the cusp is due the small population unbalance
is the larger of the larger MSD events.

The dependence of thelmax on the population ratios.We
proceed with the following algorithm after detecting th
clusters by the gaps. The six MSCA* clusters evolve in the
bifurcated orbits of ap3c3 MSCA. They can be regarded a
three doublets—(CI 1

,CI 2
), I 51, 2, and 3, so that the two

clustersCI 1
andCI 2

in a doublet evolve close together. W
combine the two populations in a doublet into one and de
s, t andu as (NI 1

1NI 2
)/N in decreasing order.

In Fig. 7~a!, we exhibit the averaged2lmax on the (s,t)
plane from the 23104 random events forN5104 GCML
with a51.90, «50.035. At the top of the pyramid-shape
surfacelmax is negative, and at a minimum. It occurs pr
cisely at the most symmetric population configuration. W
also find that the bulk of the events are formed with alm
perfect population symmetry. They accumulate in the top
a tiny triangleDAMB ( s,t<0.4) which is again a tiny part
of the kinematically allowed regionDPMQ. lmax is negative
-
it

e

e
t
f

over the bulk of events around the symmetric point—t
MSCA is linearly stable. The exception occurs only near
boundary~the round curve!, wherelmax is mostly positive
and small (lmax&0.05), and the maps form the confine
chaos.

The p3c2 cluster attractor. We have performed a simila
high statistics analysis ata51.90 and«50.048 for the same
N5104 GCML. The final states are twofold: ap3c2 cluster
attractor ~83%! and unstablep3 clusters with mixing~the
rest!. Hereafter we analyze the former in Fig. 8. In the regi
0.55<u<0.61, thep3c2 clusters are tightly bounded an
linearly stable. Here the dynamics of the GCML is reduc
to that of two clusters. Just like thep2c2 state in the two
ordered clustered phases@1#, the p3c2 orbits bifurcate with
the change ofu—the ratiou can be used as a control param
eter even in the turbulent regime.

However, there is a remarkable difference as well.
p2c2 there is no stable attractor foru outside the window. In
the turbulent regime, on the other hand, a loosely bou
p3c2 state can be formed—the three orbital bands in
edge regions. This state is again confined chaos.lmax is posi-
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tive (0<lmax<0.2), and the maps fluctuate randomly
each of the two clusters. But the clusters are in a mac
scopic period-3 motion. As the probability distributio
shows, this is formed as frequently as thep3c2 cluster at-
tractor. The state of confined chaos at the unbalanced p
lation is a characteristic feature of the cluster attractors in
turbulent regime.

VI. CONCLUSION

In this paper we have revisited the GCML of the logis
maps, and studied in detail its so-called turbulent regime.
have presented our new phenomenological findings in an
tensive statistical analysis, which as a whole reveal that
turbulent regime is under the systematic control of the p
odic windows of the element logistic map. In particular w
have shown that the hidden coherence occurs only in a
limited regions in the turbulent regime. Some observatio
were partially reported in earlier articles by one of us~T.S.!
@21#, which include the finding of the manifestation ofp3c3
MSCA andp3c2 attractor state.

There appears remarkablep3c3 MSCA states as well a
p3c2 cluster attractors induced by the period-3 window
the element map. Our tuning condition predicts by a fam
of curves how the dynamics of the element map foliates
the parameter space of the GCML. This successfully
plains the salient peak-valley structures of the MSD surfa
and tells us where to see the remarkable sequence o
cluster attractors of the typep,c5p→(p21)→(p22)
→•••.

We have also investigated the linear stability of t
period-3 cluster attractors. Both thep3c3 MSCA and its
bifurcated state are linearly stable when the population s
metry is good, and the MSD of the mean field is minimize
We have analytically explained the value of the coupling« at
a given a for the formation of the most stable bifurcate
MSCA. Thep3c2 cluster attractor is also linearly stable
the u window even though the MSD of theh(n) is quite
high. For the unbalanced population configuration the sys
forms an interesting state of confined chaos, which is a c
acteristic feature of the cluster attractors in the turbulent
gime.

There remain interesting unsolved problems. One c
cerns the state of confined chaos newly found in the tur
lent regime. This is a state consisting of a few clusters
o-

u-
e

e
x-
e

i-

ry
s

f
y
n
-

e,
he

-
.

m
r-
-

-
-

n

macroscopic periodic motion and maps move around cha
cally inside each clusters. Regarding the linear stability,
Lyapunov exponent is positive. It is tempting to single o
the nonlinear effect which confines the maps in perio
clusters. A related problem is the onset of incomplete s
chronization with the decrease of the reduction factorr along
the foliation curves. The other problem is concerned with
variation of the dynamics with the system sizeN. We have
found that the system becomes an extremely sensitive m
of the element dynamics with increasingN. The salient evi-
dence is shown in Figs. 2 and 3, but we are unable to exp
why this is so. In field theory the vacuum at the spontane
breakdown of the symmetry is stable only when the deg
of dynamical degree of freedom is infinite@20#. If we may
regard the randomness of GCML maps as a symmetry,
MSCA with no h(n) fluctuation corresponds to a vacuum
the symmetry breakdown, and the formation of it by sy
chronization corresponds to the onset of an ordered par
eter. The resolution of the finite size effect in the GCML
tempting, since it may bridge the synchronization of t
maps and the onset of the order parameter in the field the
in quantitative terms. As a whole this work is an explorati
of order in chaos, and we have found that the turbulent
gime of the GCML is controlled by the foliation of the sing
logistic dynamics.

Note added.Recently, we have noted related works on t
foliation of the logistic windows. A. P. Parravano and M. G
Cosenza independently reported the MSCA@22#. T. Shibata
and K. Kaneko also independently found the foliation
windows in the mean field fluctuations, and called it
‘‘tongue structure’’@23#. Both parallel works@22,23# overlap
ours with respect to foliation, but neither the manifestation
type p.c attractors nor the stability of the MSCA were di
cussed there.
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